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Abstract

This paper develops an efficient approach to modelling and forecasting time-series
data with an unknown number of change-points. Using a conjugate prior and condi-
tional on time-invariant parameters, the predictive density and the posterior distribu-
tion of the change-points have closed forms. The conjugate prior is further modeled as
hierarchical to exploit the information across regimes. This framework allows breaks in
the variance, the regression coefficients or both. Regime duration can be modelled as
a Poisson distribution. A new efficient Markov chain Monte Carlo sampler draws the
parameters as one block from the posterior distribution. An application to a Canadian
inflation series shows the gains in forecasting precision that our model provides.
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1 Introduction

This paper develops an efficient Bayesian approach to modelling and forecasting time series
data with an unknown number of change-points. The approach simplifies structural break
analysis and reduces the computational burden relative to existing approaches in the liter-
ature. A conjugate prior is modeled as hierarchical to exploit information across regimes.
Regime duration can be inferred from a fixed structural change probability or modelled as a
Poisson distribution. Compared to existing time series models of Canadian inflation, includ-
ing alternative structural break models, our specification produces superior density forecasts
and point forecasts.

Accounting for structural instability in macroeconomic and financial time series models
is important. Empirical applications by Clark and McCracken (2010), Geweke and Jiang
(2011), Giordani et al. (2007), Liu and Maheu (2008), Wang and Zivot (2000), Stock and
Watson (1996) among others demonstrate significant instability.

The problem of forecasting in the presence of structural breaks has been recently ad-
dressed by Koop and Potter (2007), Maheu and Gordon (2008), Maheu and McCurdy (2009)
and Pesaran et al. (2006) using Bayesian methods. These approaches provide feasible solu-
tions but are all computationally intensive.

The purpose of this paper is to provide a change-point model suitable for out-of-sample
forecasting with the attractive features of the previous approaches but which is computation-
ally less demanding. Parameters in each regime are drawn independently from a hierarchical
prior. This allows for learning about the structural change process and its affect on model
parameters and is convenient for computation. We introduce a new Markov chain Monte
Carlo (MCMC) sampler to draw all the parameters including the hierarchical prior, the pa-
rameters of the durations, the change-points and the parameters characterizing each regime
from their posterior distribution jointly. As a result, the mixing of the chain is better than
that of a regular Gibbs sampling scheme as in Chib (1998). Lastly, different types of break
dynamics including having breaks in the variance, the regression coefficients or both are
nested in this framework.

We extend Maheu and Gordon (2008) and Maheu and McCurdy (2009) in four directions.
First, a conjugate prior for the parameters that characterize each regime is adopted. Con-
ditional on this prior and the time-invariant parameters, the predictive density has a closed
form, which reduces the computational burden compared to Maheu and Gordon (2008).1

Second, a hierarchical structure for the conjugate prior is introduced to allow pooling of
information across regimes, as in Pesaran et al. (2006). Third, we show how to model the
regime duration as a Poisson distribution, which implies duration dependent break proba-
bilities. Lastly, we show how to produce the smoothed distribution of the change-points.

Koop and Potter (2007) also model regime durations but they assume a heterogeneous
distribution for the duration in each regime. Their approach augments the state space by
regime durations, so there are O(T 2) states, which implies a large transition matrix. In
contrast, we assume that the regime durations are drawn from the same distribution. This
simplification results in number of states being O(T ) in our model. Koop and Potter (2007)

1Maheu and Gordon (2008) assume a conditional conjugate prior and use Gibbs sampling to compute
the predictive density. The computational benefits of our approach require a conjugate prior and simplified
structural break process compared with other models in the literature.
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assume that after a structural change, the parameters in the new regime are related to those
in the previous regime through a random walk. This path dependence in parameters further
increases computation time.

Different versions of our model are applied to a Canadian inflation series to investigate
its dynamic stability. Canadian inflation is challenging to forecast as inflation targeting was
introduced in 1991. This raises the question of the usefulness of the data prior to this date
in forecasting after 1991. We also show that incorporating exogenous subjective information
from policy changes into our model can further improve forecasts.

The log-predictive likelihood is used as the criterion for model comparison. The best
model is the hierarchical model which allows breaks in the regression coefficients and the
variance simultaneously. This model provides large improvements compared to linear no-
break models and to autoregressive benchmarks with a GARCH parametrization. A sub-
sample analysis is consistent with the results from the full sample. We also show how to
incorporate exogenous information or variables in our framework for out-of-sample forecast-
ing. A posterior analysis based on the optimal model identifies 4 major change-points in the
Canadian inflation dynamics. The duration dependent break probability is not a significant
feature of the data.

The paper is organized as follows. Section 2 introduces the model and a MCMC method
is proposed to sample from the posterior distribution efficiently. Section 3 extends the non-
hierarchical prior to a hierarchical one in order to exploit the information across regimes.
Different extensions of the hierarchical model are introduced in Section 4, including a model
with breaks only in the variance, only in the regression coefficients or independent breaks
in both. A duration dependent break probability is also modeled by assuming a Poisson
distribution for the regime durations. Section 5 applies the model to a Canadian inflation
time series. Section 6 concludes.

2 Structural Break Model with Conjugate Prior

In the following we assume that two consecutive structural breaks define a regime. A regime
consists of a set of contiguous data drawn from a data density with a fixed model parameter
θ. Different regimes will have different θ which is assumed to be drawn from a specified
distribution. The number of observations in a regime denotes the duration of a regime. We
discuss how to compute the posterior density of θ for each regime as well as the predictive
density. The following subsection 2.1 then gives specifics and shows how to integrate out all
possible structural break points (regimes) to form predictions.

If time i is the starting point of the most recent regime, it is assumed that the data before
time i is not informative for the posterior of the parameter θ governing the current regime.

If the most recent break is at time i (i ≤ t) then the duration of the current regime at
time t is defined as dt = t− i + 1. The duration is used as a state variable in the following
for two reasons. First, we wish to study not only the forecasting problem but also the ex-
post analysis of multiple change-points in-sample.2 Second, working with dt facilitates the
modeling of regime durations directly, which we discuss later.

2Maheu and Gordon did not consider the smoothed distribution of breaks and only focused on the filtered
distribution of change points.
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Formally, define dt as the duration of the most recent regime up to time t and dt ∈
{1, . . . , t} by construction. If a break happens at time t, then dt = 1. If dt = t, then there is
no break throughout the whole sample. Define Yi,t = (yi, . . . , yt) for 1 ≤ i ≤ t. If i > t, Yi,t
is an empty set.

To form the predictive density for yt+1 conditional on duration dt+1, we require the
posterior density based on data Y1,t. Let the data density of yt+1 given the model parameter
θ and information set Y1,t be denoted as p(yt+1 | θ, Y1,t). There are two cases to consider.
The first case is that the regime continues for one more period while the second case is the
occurrence of a structural change, with a new draw of the parameter θ occurring between t
and t+ 1. If p(θ) is the prior for θ then conditional on duration dt+1 the posterior is

p(θ|dt+1, Y1,t) ≡ p(θ|Yt−dt+1+2,t) ∝
{
p(yt−dt+1+2, . . . , yt|θ)p(θ) dt+1 > 1
p(θ) dt+1 = 1.

(1)

The predictive density conditional on the duration is given by

p(yt+1 | dt+1, Y1,t) =

∫
p(yt+1 | θ, Y1,t)p(θ | dt+1, Y1,t)dθ (2)

=

∫
p(yt+1 | θ, Y1,t)p(θ | Yt−dt+1+2,t)dθ. (3)

The second equality comes from the assumption that the data before a break point is un-
informative for the regime after it. For example, if dt+1 = 1, p(θ | Yt−dt+1+2,t) is equivalent
to its prior p(θ). The data density conditions on Y1,t to allow for autoregressive models and
other time series specifications.

We assume a constant structural break probability π ∈ (0, 1). To emphasize that θ will
change at each break point define θt ≡ (βt, σ

−2
t ) as the collection of the parameters that

characterize the data density at time t. The full specification we focus on is the following.

dt =

{
dt−1 + 1 w.p. 1− π,
1 w.p. π,

(βt, σ
−2
t ) ∼ 1(dt = 1)NG(β,H−1, χ/2, ν/2) + 1(dt > 1)δ(βt−1,σ

−2
t−1), (4)

yt | βt, σt, Y1,t−1 ∼ N(x′tβt, σ
2
t ).

The discrete measure concentrated at the mass point (βt−1, σ
−2
t−1) is denoted as δ(βt−1,σ

−2
t−1).

The covariate xt can include exogenous or lagged dependent variables. In this paper we
consider xt = (1, yt−1, . . . , yt−q)

′, which is an AR(q) model in each regime. If a break hap-
pens (dt = 1), θt is drawn independently from the prior NG(β,H−1, χ/2, ν/2), where NG
represents a normal-gamma distribution.3 If there is no break (dt > 1), all parameters are
the same as those in the previous period.

3The precision (inverse of variance) σ−2t is drawn from a gamma distribution G(χ/2, ν/2), where χ/2

is the rate and ν/2 is the degree of freedom. Its prior mean is ν
χ and prior variance is 2ν

χ2 . It also implies

that the prior mean of the variance σ2
t is

χ

ν−2 . Conditional on the variance, the vector of the regression

coefficients βt is drawn from a multivariate normal distribution N(β,H−1σ2
t ).
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2.1 Estimation and Inference

Due to the conjugacy of the prior, the posterior distribution of the parameters that charac-
terize the data density at time t is still normal-gamma conditional on the duration dt,

βt, σ
−2
t | dt, Y1,t ∼ NG(β̂, Ĥ−1, χ̂/2, ν̂/2), (5)

with

β̂ = Ĥ−1(Hβ +X ′t−dt+1,tYt−dt+1,t), Ĥ = H +X ′t−dt+1,tXt−dt+1,t, (6)

χ̂ = χ+ Y ′t−dt+1,tYt−dt+1,t + β′Hβ − β̂′Ĥβ̂, ν̂ = ν + dt (7)

where Xt−dt+1,t = (xt−dt+1, . . . , xt)
′. If there is no break at time t + 1, the new duration

increases by 1 (dt+1 = dt + 1) and the parameters which characterize the data dynamics stay
the same (θt+1 = θt) as in the last period.

The posterior distribution of θt given dt is used to compute the predictive density for yt+1

yt+1 | dt+1 = dt + 1, Y1,t ∼ t

(
x′tβ̂,

χ̂(x′tĤ
−1xt + 1)

ν̂
, ν̂

)
, (8)

which is a Student-t distribution. For the special case of dt+1 = 1, a structural change
happens at time t+ 1, so the data before t+ 1 is uninformative for the predictive density. In
this case the posterior is replaced by the prior and we obtain the following predictive density,

yt+1 | dt+1 = 1, Y1,t ∼ t

(
x′tβ,

χ(x′tH
−1xt + 1)

ν
, ν

)
. (9)

By integrating out the model parameters, the predictive density depends on the duration
dt+1 and the past information Y1,t. Now Chib’s (1996) method to jointly sample the discrete
latent variable from a hidden Markov model can be applied to sample D1,T = (d1, . . . , dT )
jointly.

To sample D1,T a forward-filtering pass is made followed by a backward-sampling method.
The forward-filtering pass is conducted as follows.

1. At t = 1, the distribution of the duration is p(d1 = 1 | y1) = 1 by assumption.

2. The forecasting step

p(dt+1 = j | π, Y1,t) =

{
p(dt = j − 1 | π, Y1,t)(1− π) for j = 2, · · · , t+ 1,

π for j = 1.

3. The updating step

p(dt+1 = j | π, Y1,t+1) =
p(yt+1 | dt+1 = j, Y1,t)p(dt+1 = j | π, Y1,t)

p(yt+1 | π, Y1,t)
,

for j = 1, . . . , t + 1. The first term in the numerator on the right hand side is a
Student-t density function which we have derived above. The second term is obtained
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from step 2. The denominator is the predictive likelihood given π and is computed by
summing over all the values of the duration dt+1,

p(yt+1 | π, Y1,t) =
t+1∑
j=1

p(yt+1 | dt+1 = j, Y1,t)p(dt+1 = j | π, Y1,t). (10)

4. Iterate over step 2 and 3 until the last period T .

Following this, the backward-sampling method samples the vector of durations D1,T =
(d1 . . . , dT ) jointly as follows.

1. Sample the last period duration dT from dT | π, Y1,T , which is obtained from the last
iteration of the forward-filtering step.

2. If dt > 1, then dt−1 = dt − 1.

3. If dt = 1, then sample dt−1 from the distribution dt−1 | π, Y1,t−1. This is because dt = 1
implies a structural change at time t. Hence, for any τ ≥ t, the data yτ is in a new
regime and uninformative for dt−1. The distribution dt−1 | dt = 1, π, Y1,t−1 is equivalent
to dt−1 | dt = 1, π, Y1,T .

4. Iterate steps 2 and 3 until the first period t = 1.

Using the conjugate prior has several advantages. First, the computational burden is
negligible compared to the approach of Maheu and Gordon (2008) with non-conjugate priors.4

The computer memory required by the predictive likelihoods is O(T 2), which is manageable
for a sample size up to several thousands. The number of regimes is equal to the number of t
such that dt = 1 in the sample D1,T . If K is the number of regimes implied by one sample of

the vector of the durations D1,T from the posterior distribution, then K =
T∑
t=1

1(dt = 1). The

posterior distribution of K−1 is the distribution of the number of change-points. Finally, the
posterior sampler is efficient according to Casella and Robert (1996), because the parameters
Θ1,T = {θt}Tt=1 are integrated out which improves the accuracy of posterior estimates.

In the case of the constant break probability, the prior of the break probability π is spec-
ified as a Beta distribution, B(πa, πb). Because the analytic conditional marginal likelihood
p(Y1,T | π) exists, π can be sampled through a Metropolis-Hastings framework by integrating
out the time-varying parameters Θ1,T and the regime durations D1,T .

For an efficient proposal sampling distribution, we exploit the information from the pre-
vious sample of the regime durations D

(i−1)
1,T in the Markov chain. In other words, we use

the known conditional distribution of π given the previous sample of D
(i−1)
1,T as a tailored

proposal distribution in a Metropolis-Hastings algorithm.
In the following, we sample from p(π | Y1,T ) first and then from p(Θ1,T , D1,T | π, Y1,T ).

This is equivalent to sampling from the joint posterior distribution p(π,Θ1,T , D1,T | Y1,T ).
The sampling steps are as follows.

4Not all beliefs can be represented conveniently with the conjugate prior. For instance, stationary condi-
tions are difficult to impose in the hierarchical model of Section 3.
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1. Sample π | Y1,T from the proposal distribution:

π(i) | Y1,T ∼ Beta(πa +K(i−1) − 1, πb + T −K(i−1)),

where K(i−1) is the number of regimes implied from the previous sample of D
(i−1)
1,T .

Accept π(i) with probability

min

{
1,

p(π(i) | πa, πb)
p(π(i−1) | πa, πb)

p(Y1,T | π(i))

p(Y1,T | π(i−1))

p(π(i−1) | πa +K(i−1) − 1, πb + T −K(i−1))

p(π(i) | πa +K(i−1) − 1, πb + T −K(i−1))

}
,

and otherwise set π(i) to π(i−1).

2. Sample Θ1,T , D1,T | π, Y1,T :

(a) Sample D1,T | π, Y1,T from the previously described forward-backward sampler.
Calculate the number of regimes K and index the regimes by 1, · · · , K. Use an
auxiliary variable st to represent the regime index at time t. Define s1 = 1 and
st = 1 for t > 1 until time τ with dτ = 1, which implies that there is a break and
the data are in a new regime. Then set sτ = 2 at this break point, and iterate
until the last period with sT = K.5

(b) To sample Θ1,T | D1,T , π, Y1,T , we only need to sample K different sets of pa-
rameters because their values are constant in each regime. Define {β∗i , σ∗i } as the
distinct parameters which characterize the ith regime, where i = 1, . . . , K. Then

β∗i , σ
∗−2
i ∼ NG(βi, H

−1

i , χi/2, νi/2),

with

βi = H
−1

i (Hβ +X ′iYi), H i = H +X ′iXi,

χi = χ+ Y ′i Yi + β′Hβ − β′iH iβi, νi = ν +Di

and Xi = (xt0 , . . . , xt1)′ and Yi = (yt0 , . . . , yt1)′, where st = i if and only if
t0 ≤ t ≤ t1. So, Xi and Yi represent the data in the ith regime. The duration of
the ith regime is Di = t1 − t0 + 1.

The Markov chain is run for N0 + N iterations and the first N0 iterations are discarded

as burn-in iterations. The rest of the parameters draws,
{
π(i),Θ

(i)
1,T , D

(i)
1,T

}N
i=1

, are used for

posterior inference and forecasting. For example, the posterior mean of the break probability

is computed as the sample average of π(i) as Ê(π | Y1,T ) = 1
N

N∑
i=1

π(i). The posterior mean of

the volatility at time t is Ê(σ2
t | Y1,T ) = 1

N

N∑
i=1

σ2
t

(i)
. Similarly, we can estimate the predictive

5For example, if D1,T = (1, 2, 3, 1, 2, 1, 2, 3, 4), we can infer that there are K = 3 regimes and that the time
series of regime indicators is S1,T = (s1, . . . , sT ) = (1, 1, 1, 2, 2, 3, 3, 3, 3). There is a one-to-one relationship
between D1,T and S1,T .
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density for time T + 1 by averaging the MCMC draws of π using (10) or based on the draws
of π and D1,T following

p̂(yT+1 | Y1,T ) =
1

N

N∑
i=1

{
p(yT+1 | dT+1 = d

(i)
T + 1, Y1,T )(1− π(i)) + p(yT+1 | dT+1 = 1, Y1,T )π(i)

}
.(11)

This model has two crucial assumptions. One is the conjugate prior for the regime
dependent parameters which characterize the conditional data density. The other is that the
data before a break point is uninformative for the regime after it conditional on the time-
invariant parameters. Both are necessary for the analytic form of the predictive density.
If we do not use the conjugate prior, each predictive density p(yt+1 | dt+1, Y1,t) has to be
estimated numerically. If the second assumption is violated, the data before the break
provide information for the regime after it, then the duration dt itself is not sufficient for an
analytic predictive density given the time-invariant parameters. For example, in Koop and
Potter’s (2007) model, in order to integrate out the parameters in the most recent regime,
they need to know the whole sample path of the durations D1,t = (d1, . . . , dt). However, since
the vector of durations D1,t takes 2t values in their model, it is computationally infeasible to
calculate the predictive likelihood for every case, while in the new model it is feasible.

Because data prior to a break point may be useful in forecasting we next consider a hier-
archical prior to exploit this but still maintain the computational feasibility of our approach.

3 Hierarchical Structural Break Model

In our model, forecasts immediately after a break are dominated by the prior and could be
poor if the prior is at odds with the new parameter value of the data density.6 Of course as
more data arrives the predictive density improves but this can take some time.

Pesaran et al. (2006) proposed to estimate the prior to improve forecasting by exploiting
the information across regimes. This section introduces a hierarchical prior for the structural
break model. This is computationally feasible only if the conjugate prior is used as in
the previous section. The model is referred as the hierarchical SB-LSV model: SB means
structural break and LSV means that the level, the slope and the variance are subject to
breaks. The model in the previous section is labelled as the non-hierarchical SB-LSV model.

The previous prior parameters β,H, χ, ν are not fixed any more but given a prior distri-
bution. The hierarchical SB-LSV model is the following:

π ∼ B(πa, πb), β,H ∼ NW(m0, τ
−1
0 , A0, a0), χ ∼ G(d0/2, c0/2),

ν ∼ Exp(ρ0),

dt =

{
dt−1 + 1 w.p. 1− π,

1 w.p. π,
(12)

(βt, σ
−2
t ) ∼ 1(dt = 1)NG(β,H−1, χ/2, ν/2) + 1(dt > 1)δ(βt−1,σ

−2
t−1),

yt | βt, σt, Y1,t−1 ∼ N(x′tβt, σ
2
t ).

6Recall that after a break occurs (dt = 1) a new parameter (βt, σ
−2
t ) is drawn from the prior distribution

in (4).
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The positive definite matrix H has a Wishart distribution W(A0, a0), where A0 is a positive
definite matrix and a0 is a positive scalar. The prior mean of H is a0A0. The prior variance
of H ij is a0(A2

ij + AiiAjj), where subscript ij means the ith row and the jth column. β | H
is a multivariate normal N(m0, τ

−1
0 H−1), where τ0 is a positive scalar. χ has a gamma

distribution with a prior mean of c0/d0 and a prior variance of 2c0/d
2
0. ν has an exponential

distribution with both the prior mean and variance equal to ρ0.
Conditional on the number of regimes K and the distinct parameter values {β∗i , σ∗i }Ki=1,

the posterior distribution of the hierarchical parameters β and H are still normal-Wishart.

β,H | {β∗i , σ∗i }Ki=1 ∼ NW(m1, τ
−1
1 , A1, a1),

with

m1 =
1

τ1

(
τ0m0 +

K∑
i=1

σ∗−2
i β∗i

)
, τ1 = τ0 +

K∑
i=1

σ∗−2
i , (13)

A1 =

(
A−1

0 +
K∑
i=1

σ∗−2
i β∗i β

∗′
i + τ0m0m

′
0 − τ1m1m

′
1

)−1

, a1 = a0 +K. (14)

The posterior of χ | ν,K, {σ∗i }Ki=1 is a gamma distribution,

χ | ν, {σ∗i }Ki=1 ∼ G(d1/2, c1/2), (15)

with d1 = d0 +
K∑
i=1

σ∗−2
i and c1 = c0 +Kν. The posterior of ν | χ,K, {σ∗i }Ki=1 is

p(ν | χ,K, {σ∗i }Ki=1) ∝

(
(χ/2)ν/2

Γ(ν/2)

)K ( K∏
i=1

σ∗−2
i

)ν/2

exp

{
− ν

ρ0

}
,

which does not have a convenient form. It is sampled by a Metropolis-Hastings algorithm
using a random walk chain as the proposal distribution.

Sampling from the posterior density of the break probability π and the hierarchical prior
parameters follows the same approach used in the non-hierarchical SB-LSV model. To
implement the sampler, define Ψ = (π, β,H, χ, ν) as the collection of the break probability
π and the parameters of the hierarchical prior, which are all time-invariant. To obtain a
good proposal density we base it on the previous iteration of the sampler and exploit known
conditional posterior densities. Since the analytic form of the marginal likelihood p(Y1,T | Ψ)
exists, the joint sampler draws Ψ from this proposal distribution and accepts the new draw
with a probability implied by the Metropolis-Hastings algorithm.

Following this, sample the regime durations D1,T and the time-varying parameters Θ1,T

conditional on Ψ and the data Y1,T . As in the previous specification, sample jointly from the
full posterior Θ1,T , D1,T ,Ψ|Y1,T , which results in a well-mixing Markov chain. The details
are given in Section A.1.

After discarding the burn-in samples, the rest of the sample is used to draw inferences
from the posterior as in the non-hierarchical model. The predictive density, p(yT+1 | Y1,T ) is
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estimated by

1

N

N∑
i=1

{
p(yT+1 | dT+1 = d

(i)
T + 1,Ψ(i), Y1,T )(1− π(i)) + p(yT+1 | dT+1 = 1,Ψ(i), Y1,T )π(i)

}
.

Alternatively, averaging over the predictive density expression in (10) can be used. This
latter approach integrates out the durations.

4 Extensions

This section extends the model while preserving the two assumptions: the conjugate prior
and the conditional independence between the parameters in each regime. Up to this point
we have assumed that breaks affect both the conditional mean and variance at the same
time. The extensions allow for only breaks in the variance, only breaks in the regression
coefficients or independent breaks in both. Another extension allows for duration dependent
break probabilities.

4.1 Breaks in the Variance

The model with breaks only in the variance is referred as the hierarchical SB-V model. It
assumes a time-invariant vector of the regression coefficients β. The time-varying variance
σ2
t is drawn from a hierarchical prior. The model is

π ∼ B(πa, πb), χ ∼ G(d0/2, c0/2), ν ∼ Exp(ρ0), β ∼ N(β,H−1),

dt =

{
dt−1 + 1 w.p. 1− π,

1 w.p. π,
(16)

σ−2
t ∼ 1(dt = 1)G(χ/2, ν/2) + 1(dt > 1)δσ−2

t−1
,

yt | β, σt, Y1,t−1 ∼ N(x′tβ, σ
2
t ).

The prior for the regression coefficients β is not modelled as hierarchical since it is con-
stant across all regimes. The parameters of its prior, β and H, are fixed. On the other
hand, the prior for the variance σ2

t is modelled as hierarchical to share the information
across regimes. Since the regression coefficient β is the same in all regimes, the data be-
fore a break point is informative to the regime after it. So the duration of the most recent
regime dt is not sufficient for computing the posterior of the parameters in that regime.
That is, p(θt | dt, Y1,t) 6= p(θt | dt, Yt−dt+1,t). The predictive density p(yt+1 | dt+1, Y1,t) is not
a Student-t distribution any more as in the non-hierarchical SB-LSV model.

However, p(θt | dt, β, Y1,t) = p(θt | dt, β, Yt−dt+1,t) still holds. Namely, conditional on β, if
a break happens, the volatility is independently drawn from the hierarchical prior and the
previous information is not useful for the current regime.

Meanwhile, conditional on β, the prior for the variance is conjugate. So the model can be
estimated using the method similar to that in the hierarchical SB-LSV model. Specifically,
define the collection of the time-invariant parameters as Ψ = (π, β, χ, ν). The posterior
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MCMC sampler has the following steps. First, randomly draw Ψ | Y1,T using a tailored
proposal distribution and accept it with the probability implied by the Metropolis-Hastings
algorithm. Second, conditional on Ψ and the data Y1,T , draw the regime durations D1,T and
the time-varying parameters Θ1,T . In the hierarchical SB-V model, Θ1,T = {σt}Tt=1, because
the time-invariant regression coefficients β ∈ Ψ are sampled in the first step. The details are
in Section A.2.

4.2 Breaks in the Regression Coefficients

We can also fix the variance σ2 as time-invariant and only allow the regression coefficients to
change over time. This model is labelled the hierarchical SB-LS since the breaks only happen
for the level and slopes. Conditional on the variance σ2, the data before a break is not infor-
mative to the current regime. Also, the conjugate prior exists for the regression coefficient βt
in each regime. The hierarchical SB-LS model can be estimated as the hierarchical SB-LSV
or SB-V model. The model is:

π ∼ B(πa, πb), β,H ∼ NW(m0, τ
−1
0 , A0, a0), σ−2 ∼ G(χ/2, ν/2),

dt =

{
dt−1 + 1 w.p. 1− π,

1 w.p. π,
(17)

βt ∼ 1(dt = 1)N(β,H−1) + 1(dt > 1)δβt−1 ,

yt | βt, σ, Y1,t−1 ∼ N(x′tβt, σ
2).

The posterior sampler consists of the following steps. First, randomly draw the time-
invariant parameter Ψ = (π, β,H, σ) from its posterior distribution using a MCMC sampler.

Second, sample the regime durations D1,T and the time varying parameters Θ1,T = {βt}Tt=1

conditional on the time-invariant parameter Ψ and the data Y1,T . The details are given in
Section A.3

4.3 Independent Breaks in Regression Coefficients and Variance

It is possible that breaks in the regression coefficients are independent of breaks in the
variance. This can be considered in our framework but all the parameters cannot be sampled
in one single block as before. Nevertheless, we are still able to use the durations as the
state variable conditional on the time-invariant parameters, except that we have two sets
of duration variables, one for the regression coefficients and the other for the variance, and
each set is sampled conditional on the other one. The model is the following.

πβ ∼ B(πβ,a, πβ,b), πσ ∼ B(πσ,a, πσ,b),

β,H ∼ NW(m0, τ
−1
0 , A0, a0), χ ∼ G(d0/2, c0/2), ν ∼ Exp(ρ0),

dβ,t =

{
dβ,t−1 + 1 w.p. 1− πβ,

1 w.p. πβ,
(18)

βt ∼ 1(dβ,t = 1)N(β,H−1) + 1(dβ,t > 1)δβt−1 ,
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dσ,t =

{
dσ,t−1 + 1 w.p. 1− πσ,

1 w.p. πσ,

σ−2
t ∼ 1(dσ,t = 1)G(χ/2, ν/2) + 1(dσ,t > 1)δσ−2

t−1
,

yt | βt, σt, Y1,t−1 ∼ N(x′tβt, σ
2
t ).

The breaks of βt and σt are independent. We use dβ,t and dσ,t to represent the duration
for the regression coefficients βt and the volatility σt, respectively. This model is labeled as
hierarchical SB-LS-V model. The posterior sampling algorithm is in Section A.4.

4.4 Duration Dependent Break Probability

Due to the analytic form for the predictive density even with duration dependent break
probabilities, our approach continues to be computationally straightforward. Since modeling
the duration dependent break probability is equivalent to modeling the duration, we assume
a Poisson distribution for each regime.

The hazard rate represents the duration dependent break probabilities7. The Poisson
distribution function is P (Duration = d | λ) = e−λ λ

(d−1)

(d−1)!
, where d ≥ 1 and the duration is a

discrete count variable. The implied break probability is

πj = P (dt+1 = 1 | dt = j, λ) = P (Duration = j | Duration ≥ j, λ)

=
P (Duration = j | λ)

P (Duration ≥ j | λ)

=
e−λλ(j−1)

(j − 1)γ(j − 1, λ)

where γ(x, y) is the incomplete gamma functions with γ(x, y) =
∫ y

0
tx−1e−tdt. The no-break

probability P (dt+1 = j + 1 | dt = j, λ) is simply 1− P (dt+1 = 1 | dt = j, λ).
Previously, the time-invariant structural break probability π is used in the forecasting step

to compute p(dt+1 = j | π, Y1,t) in order to construct the filtered probability p(dt = j | π, Y1,t)
and the predictive density p(yt+1 | π, Y1,t). If the break probability depends on the regime
duration, p(dt+1 = 1 | λ, dt = j) = πj, then p(dt+1 = j | λ, Y1,t) is calculated as

p(dt+1 = j | λ, Y1,t) =

p(dt = j − 1 | λ, Y1,t)(1− πj−1) for j = 2, · · · , t+ 1,
t∑

k=1

p(dt = k | λ, Y1,t)πk for j = 1.

The updating step of the forward filtering procedure and the backward sampling procedure
are not affected. Conditional on the durations D1,T , the posterior of the parameters which
characterize each regime are not changed either. So the estimation is still computationally
straightforward and follows the previous discussion.

The priors for the other parameters are set the same as the hierarchical SB-LSV model.
This extension is labelled as the hierarchical DDSB-LSV model, where DD means duration
dependent.

7In general, any hazard function in the survival analysis can be applied to model the duration.
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To estimate the hierarchical DDSB-LSV model, notice that the set of the time-invariant
parameters Ψ now is (λ, β,H, χ, ν). The posterior sampler draws Ψ from its posterior distri-
bution by a Metropolis-Hastings sampler. Then the time-varying parameters Θ1,T and the
regime durations D1,T are sampled conditional on the time-invariant parameter Ψ and the
data Y1,T . This is still a joint sampler as in the hierarchical SB-LSV with the time-invariant
break probability. Details are in Section A.5.

5 Application to Canadian Inflation

The model is applied to Canadian quarterly inflation. The data is constructed from the
quarterly CPI, which is downloaded from CANSIM8. The quarterly inflation rate is calculated
as the log difference of the CPI data and scaled by 100. It starts from 1961Q1 and ends at
2012Q2 with 206 observations. The top panel of Figure 1 plots the data.

The hierarchical models used are SB-LSV, SB-V, SB-LS, DDSB-LSV and SB-LS-V mod-
els. Two non-hierarchical SB-LSV models are also applied, one estimates the break proba-
bility π and the other fixes π = 0.01. For all the structural break models, we assume that
each regime has an AR(q) representation and estimate q = 1, 2 and 3 for each model.

For comparison we include Koop and Potter’s (2007) model (KP) of structural change.
The KP model links the regression coefficients and the log-variances of adjacent regimes
through a random walk process. For instance, if a break occurs the regime parameter changes
according to θt = θt−1 + εt, where εt is a normal innovation. In our case, θt is independent
of θt−1 conditional on the hierarchical prior.

The final comparison specifications which assume no-breaks include homoskedastic linear
autoregressive (AR) models and AR-GARCH specifications to capture heteroskedasticity.

5.1 Priors

The prior of the hierarchical SB-LSV model is:

π ∼ B(1, 9), H ∼W(0.2I, 5), β | H ∼ N(0, H−1), χ ∼ G(2, 2), ν ∼ Exp(2).

This prior is informative but covers a wide range of empirically realistic values. The prior
mean of the break probability is E(π) = 0.1, which implies infrequent breaks. The inverse
of the variance in each regime is drawn from a gamma distribution, which has a degrees of
freedom parameter centered at 2 and a rate centered at 1.

The non-hierarchical SB-LSV model fixes the parameters of the priors at β = (0, · · · , 0)′, H =
I, χ = 1, ν = 2, which are the prior means of the hierarchical SB-LSV model. The break
probability π has the same prior as that of the hierarchical model, which is B(1, 9).

As one alternative to the time-invariant break probability, the duration is modeled as a
Poisson distribution to fit the inflation dynamics. The prior of the duration parameter λ is
specified as exponential with a mean equal to 50. The other priors are the same as for the

8Table number: 3800003; table title: GDP indexes; data sources: IMDB (Integrated Meta Data Base)
numbers: 1901; series title: Canada; implicit price indexes 2002=100; personal expenditure on consumer
goods and services series; frequency: quarterly.

13



hierarchical SB-LSV model. For simplicity, the first period t = 1 is assumed to be the first
period of its regime.

For the hierarchical SB-V model, which only allows breaks in the variance, the prior of
the time-invariant regression coefficient vector is β ∼ N(0, I). Its mean and precision matrix
are the prior means in the hierarchical SB-LSV model. The priors of π, χ and ν are the
same as in the hierarchical SB-LSV model.

For the hierarchical SB-LS model, the prior of the inverse of the variance is σ−2 ∼
G(0.5, 1). The values of the rate and the degrees of freedom in this prior are the means
implied by the prior for the hierarchical SB-LSV model. The priors for π, β and H are set
the same as that of the hierarchical SB-LSV model.

For the hierarchical SB-LS-V model, the priors of the break probabilities are πβ ∼ B(1, 9)
and πσ ∼ B(1, 9). The other priors are the same as in the hierarchical SB-LSV model.

For the KP model, the prior is set the same as in Koop and Potter (2007). Their prior is
informative but covers a wide range of reasonable parameter values. It reflects an assumption
of small differences between parameters of adjacent regimes. We do not repeat their notations
here in order to avoid any confusion.

Several time invariant autoregressive models are estimated as benchmarks:

yt | β, σ, Y1,t−1 ∼ N(β0 + β1yt−1 + . . .+ βqyt−q, σ
2), (19)

with various q. The prior is set as normal-gamma (β, σ−2) ∼ NG(β,H−1, χ/2, ν/2). The pa-
rameters β = (0, · · · , 0), H = I, χ = 1, ν = 2, which are the prior mean from the hierarchical
SB-LSV model.

Autoregressive models coupled with GARCH (AR(q)-GARCH(1,1)) with no breaks are
also included to check that the structural break model is doing more than capturing neglected
heteroskedasticity. This model combines an AR structure for the conditional mean with the
conditional variance specified as σ2

t = η0 + η1(yt−1−β0−· · ·−βqyt−q)2 + η2σ
2
t−1 and assumes

normal innovations. The prior for the regression coefficients are β ∼ N(0, I), which is
the same as for the hierarchical SB-V model. The priors for the volatility coefficients are
η0 ∼ N(0, 1)1(η0 > 0), η1 ∼ N(0.05, 1)1(η1 ≥ 0) and η2 ∼ N(0.9, 1)1(η2 ≥ 0) with stationary
restriction η1 + η2 < 1.

5.2 Forecast Performance

In this section we compare models using the full sample of data and consider density forecasts
using the marginal likelihood and point forecasts using the predictive mean.

Let Mi denote a particular model. The marginal likelihood for Mi is defined as

p(Y1,T | Mi) =
T∏
t=1

p(yt | Y1,t−1,Mi). (20)

This decomposition shows that the marginal likelihood is intrinsically the out-of-sample
density forecast record9 of a model. It automatically penalizes the over-parametrized models

9The marginal likelihood is a sequence of one-period ahead predictive likelihoods each of which have
parameter uncertainty integrated out based on the respective posterior using data Y1,t−1
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since parameter uncertainty is integrated out. An increase in the marginal likelihood implies
better density forecasts over the sample. Kass and Raftery (1995) propose to compare the

models Mi and Mj by the log Bayes factors log(BFij), where BFij =
p(Y1,T |Mi)

p(Y1,T |Mj)
is the ratio

of the marginal likelihoods.10

The log-marginal likelihood is calculated as
T∑
t=1

log p(yt | Y1,t−1,Mi). The one-period

predictive likelihood p(yt | Y1,t−1,Mi) is calculated by using the data up to t− 1 to estimate
the model and plugging the value of yt into the predictive density function. The first period
uses the prior as the posterior estimates.

We also report the root mean squared forecasting error(RMSFE), which is computed as

RMSFE =

√
1
T

T∑
t=1

(ŷt − yt)2, where ŷt is the predictive mean of yt. As in the predictive

likelihoods, only data up to and including t− 1 is used to estimate the predictive mean for
yt. A two-sided Diebold and Mariano (1995) (DM) test is included to assess the statistical
significance of model forecast errors et = ŷt − yt, assuming a quadratic loss function. Since
the DM test is pairwise, we compare the optimal model implied by the marginal likelihoods,
which is the hierarchical SB-LSV AR(2) from Table 1, to other specifications. We also
report the mean absolute scaled error proposed by Hyndman and Koehler (2006), which is

computed as

1
T

T∑
t=1
|et|

1
T−1

T∑
t=2
|yt−yt−1|

, and label it as HK-MASE. A smaller value of HK-MASE means

better point forecasts.
Table 1 reports the log-marginal likelihoods, log-Bayes factors, RMSFE and p-values for

the DM test and the HK-MASE statistic. The Log-Bayes factors and DM tests are for the
optimal model (hierarchical SB-LSV AR(2)) against every other model.

According to Table 1 the best model is the hierarchical SB-LSV AR(2) model based on all
three measures which gauge the accuracy of density forecasts (Log ML) and point forecasts
(RMSFE, HK-MASE). In terms of the marginal likelihoods, the hierarchical SB-LSV AR(2)
model is strongly favored by the data. The second best model, which is the hierarchical SB-
LSV AR(3) model, has a marginal likelihood of −137.5 , which is 7.3 (137.5− 130.8 = 7.3)
less than the optimal model. If we look at models other than the hierarchical SB-LSV
models, the smallest log-Bayes factor between the hierarchical SB-LSV AR(2) model and
its competitors is larger than 14. This shows that the hierarchical SB-LSV specification
dominates other linear and nonlinear models. The hierarchical SB-LSV AR(2) model has
the smallest RMSFE and is often significantly better than the alternatives. This model also
produces the best forecasts in terms of the HK-MASE statistic.

The hierarchical structure is very important as the nonhierarchical SB-LSV versions have
much lower marginal likelihoods. The hierarchical model allows for learning where a new
parameter is most likely to be after a break has occurred. We found no evidence of structural
change from the nonhierarchical SB-LSV models and these models are generally inferior to
the benchmark AR specifications. The hierarchical SB-LSV AR(2) model is substantially

10A positive value of log(BFij) supports modelMi againstMj . Quantitatively, Kass and Raftery (1995)
suggest the results barely worth a mention for 0 ≤ log(BFij) < 1; positive for 1 ≤ log(BFij) < 3; strong for
3 ≤ log(BFij) < 5; and very strong for log(BFij) ≥ 5.
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better than the KP model in terms of the marginal likelihoods. The log-Bayes factors are 14
or more in favour of our parametrization versus the KP-AP(p), p = 1, 2, 3, while the point
forecasts are similar.

All the extensions such as the hierarchical SB-V, the hierarchical SB-LS, the hierarchical
DDSB-LSV and the hierarchical SB-LS-V model, are not supported by Canadian inflation
data. The performance of these extensions is comparable to, or even worse, than the linear
models. Among them, the hierarchical SB-LS-V model performs the worst and clearly indi-
cates that breaks in the regression coefficient and variance occur at the same time. Finally,
the AR(2)-GARCH(1,1) model improves upon the homoskedastic AR(2) and is better than
many of the extensions, but it is still strongly dominated by all the hierarchical SB-LSV
specifications.

5.3 Sub-sample Forecast Performance

As a robustness check, Table 2 reports forecast results for various sub-samples using the
best models found in Table 1. The data before 1977Q4 is used as a training sample and
the predictive likelihood, RMSFE and HK-MASE are displayed based on the rest of the
out-of-sample data.11 From the top panel, the hierarchical SB-LSV AR(2) model is still
the optimal model and strongly supported by the data based on the predictive likelihood.
The hierarchical DDSB-LSV AR(1) has the smallest RMSFE and HK-MASE. We further
decompose the sub-sample into two parts, before and after inflation targeting (1991Q1)
began. The middle and the bottom panel of Table 2 show that the conclusion from the top
panel is not affected by different sub-samples.

5.4 Forecasts in the Presence of Inflation Targeting

In February 1991, the Bank of Canada and the Government of Canada issued a joint state-
ment setting out a target path for inflation reduction, which is measured by the change of
12-month CPI index excluding food, energy and the temporary effect of indirect taxes. The
target was 3% by the end of 1992, 2.5% by the middle of 1994, and 2% by the end of 1995
with a range of ±1%. In December 1993, the 1%−3% plan was extended to the end of 1998.
In 1998, it was further extended to 2001. In May 2001, it was extended to the end of 2006.12

In 2006, it was extended to the end of 2011.13

Perhaps our structural break model is capturing nothing more than publicly announced
policy changes. We further investigate whether a linear model is sufficient to describe infla-
tion dynamics by taking into account these important policy changes. Two sample periods
are used. The first one is from 1991Q2 until the end (2012Q2) and represents the whole pe-
riod of the inflation targeting policy. The second one is from 1994Q1 until the end to show a
more homogeneous policy regime, in which the inflation target range is 1%− 3%. The linear
models only use the sub-sample data and the data that are necessary to calculate the first
period predictive density. For example, to calculate the predictive density at 1991Q2 from

11The interpretation of the predictive likelihood is equivalent to the marginal likelihood if the initial data
set is viewed as a training sample to form the priors.

12See Freedman (2001)
13See Renewal of the Inflation-Control Target: Background Information by the Bank of Canada, Nov 2006.
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an AR(2) model in the first sub-sample, the data start at 1990Q4, which is the two-period
lag of 1991Q2. On the other hand, the hierarchical SB-LSV model uses the data from the
first period(1961Q1), because it can automatically learn about structural change. The priors
are assumed the same as the previous model comparison in Table 1.

Table 3 shows the comparison between linear models and the hierarchical SB-LSV model.
The log-predictive likelihood is included along with the RMSFE, the DM test p-values and
the HK-MASE. The last row of each sub-panel is the naive forecast that the inflation next
period is 2% annually.14

The two sub-samples have the same implication for density forecasts as the full sample
results. The hierarchical SB-LSV model is still strongly supported by the predictive likeli-
hood. The hierarchical structure improves forecasts even after a well recognized break point.
On the other hand, the linear models outperform our approach in point forecasting, although
not significantly. It is not surprising that the best point forecasting approach is the 2% rule
or the AR(1) model, as the Bank of Canada quickly established credibility for its inflation
policy in the market.

5.5 Subjective Forecasts

An advantage of our approach is that subjective information can easily be introduced into the
model to produce forecasts. Exogenous information can be modeled in our framework with
some simple revisions. We consider 3 extra pieces of information for constructing a revised
version of the hierarchical SB-LSV model and label the model as the subjective hierarchical
SB-LSV model. The information is the following.

1. Inflation in 1991Q1 experiences a temporary increase after the introduction of the GST
(Goods and Services Tax). We assume that the increase is 2%, which is consistent with
some conjectures from policy researchers before 1991.

2. A deterministic structural change happens in 1991Q1, because of the introduction of
the inflation targeting policy.

3. The dynamics of inflation follow a simple 2% rule starting from 1994Q1 and therefore
the forecast is always 2%.

In order to incorporate this extra information, the data are transformed and the model
is revised as follows. First, construct ỹ1991Q1 = y1991Q1 − 100 log(1.02) to replace y1991Q1 by
removing the expected inflation change on 1991Q1 with the introduction of the GST. Second,
to impose a deterministic break at time t = 1991Q1, set p(d1991Q1 = 1 | Y1961Q1,1991Q1) = 1
in the forward filtering step when sampling the regime allocation. Lastly, construct ỹt =
yt − 100 log(1.02)

4
and set x̃t = 0 to replace yt and xt in Equation (12) for t ≥ 1994Q1.

After the data transformation, set the rest of ỹt and x̃t equal to yt and xt, respectively.
We can simply apply the revised model to the transformed data and compute the predictive
densities and means.15 Since ỹt and x̃t are the same as yt and xt for t < 1991Q1, we will focus
on the predictive likelihood starting from the GST introduction in 1991Q1. The top panel

14The quarterly rate used in the calculation is 100× log(1.02)
4 .

15All of these adjustments can be done in real time.
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of Table 4 shows these results while the middle and bottom panel of the table correspond to
Table 3. The difference in the log-predictive likelihoods for the AR(1) in the top and middle
panel (58.1− 51.1 = 7) shows that the 1991Q1 observation is influential.

The top panel of Table 4 shows the subjective hierarchical SB-LSV model outperforms
the hierarchical SB-LSV model (the best model in Table 1 and Table 2) and the AR(1)
model (the best linear model in Table 3). The subjective model improves the log-predictive
likelihood of the hierarchical SB-LSV model by 7.8 (from -45.3 to -37.5) and the predictive
mean by 7% (from 0.42 to 0.39).

Even if we ignore the 1991Q1 outlier, the subjective hierarchical SB-LSV model is still
better than the original hierarchical SB-LSV model in density forecasts (middle and bottom
panel of Table 4). Furthermore, the subjective hierarchical SB-LSV model always provides
better point forecasts than the original hierarchical SB-LSV model but cannot match the
2% rule between 1991Q1 and 1993Q4. In summary, it is straightforward to incorporate
subjective information into our model which can lead to improved forecasts.

5.6 Exogenous Predictors

Are there other exogenous predictors useful in Canadian inflation forecasting? We consider
unemployment and industrial production, following Stock and Watson (1999), who forecast
inflation through a Phillips curve or a generalized Phillips curve by using real sector variables.

The industrial production data is from Statistics Canada while the unemployment data
is from International Monetary Fund (IMF). The growth rate of industrial production is
computed as the first difference of the logarithmic values. The unemployment is computed
as the simple average from the monthly data. All time series are truncated to have the same
length from 1976Q2 to 2012Q2.

The exogenous variables augment the regressors xt in Equation (12) and their coefficients
are subject to breaks. For example, in a hierarchical SB-LSV model with AR(1) process in
each regime, we can have xt = (1, yt−1, xUm,t−1), where xUm,t−1 is the unemployment. We use
the data at period t−1 to forecast the inflation yt. The regressor xUm,t−1 can be replaced by
xIP,t−1 to reflect the real sector’s influence or both can be included. We can also add more
lags of the exogenous variable to the model.

We use an informative prior similar to the Minnesota prior to the exogenous predictors’
coefficients. For instance, including one lag of the unemployment rate, the 3rd element on

the diagonal of A0 is 1
5

σ2
Um

σ2
infl

where σ2
infl and σ2

Um are the sample variance of inflation and

unemployment and makes the prior independent of data scaling.16 This prior is used for
additional lags of unemployment and similarly for lags of industrial production. The rest
of the priors are the same as that of the original hierarchical SB-LSV model. We have
performed robustness checks for this prior and the results are qualitatively the same. For
example, if we set the prior the same as that of the hierarchical SB-LSV model, our results
are only different in the first decimal place for the marginal likelihood.

Table 5 shows the model comparison results after adding the exogenous variables. The
model label Hie-SB-LSV AR(1) + IP(1), means that the regressors are the intercept, the first
lag of inflation and the first lag of industrial production in each regime of the hierarchical

16Recall from (12) that the prior mean of H is a0A0.
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SB-LSV model. The other models’ structure can be inferred from their names in a similar
manner. Our finding is consistent with Stock and Watson (1999) in the sense that including
real sector variables improves inflation density forecasts. The hierarchical SB-LSV AR(1) +
IP(1) model has the largest marginal likelihood and the performance of the point forecasts
is close to the hierarchical SB-LSV AR(2).

5.7 Computational Speed and Numeric Efficiency

An advantage of our approach is computational speed and numerical sampling efficiency. To
consider these, Koop and Potter’s (2007) model is compared with the hierarchical SB-LSV
model. We assume each model has an AR(2) process in each regime, which is the optimal
model in Table 1. These two approaches are not directly comparable in general since they
assume different data dynamics.

Both methods are applied to the whole sample of the Canadian inflation time series in
the application. Each posterior sampler draws 6000 random samples and the first 1000 are
discarded as burn-in samples. The CPU time17 used in Koop and Potter’s (2007) model
and our model are 1.1e9 and 1.4e8, respectively. Wall clock time is about 2 minutes for
our model while it is between 15-20 minutes for the Koop and Potter’s (2007) model. The
relative numeric efficiency (RNE) is the ratio of the variance of the sample mean of a vector
of draws relative to the variance from an iid sequence and is computed as (1 + 2

∑τ
i=1

τ−i
τ
ρ̂i)

where τ = 1000 and ρ̂i is the i-th sample autocorrelation computed from the posterior
sample. Larger values indicate less efficient sampling. The RNE for the posterior mean of
the number of regimes implied by the Koop and Potter (2007) model is 49.2. Our approach
is more efficient since the RNE is only 0.49. If we consider the computational time and the
RNE together, Koop and Potter’s (2007) model requires about 1.1e9

1.48
49.2
0.49
≈ 789 times more

computational time than our approach in order to achieve the same numeric efficiency for
estimating the posterior mean of the number of regimes.

To investigate the source of improvement we estimate the SB-LSV model using a Gibbs
sampler. We sample the durations conditional on Θ1,T and then sample Θ1,T conditional
on the durations. To evaluate the efficiency of an algorithm we compute the effective sam-
ple size (ESS) which is the number of effectively independent draws from the posterior
distribution that the Markov chain is equivalent to. The nominal ESS is calculated as

R
[
1 + 2

∑τ
i=1

τ−i
τ
ρ̂i
]−1

and represents the true posterior sample size after accounting for
autocorrelation in the chain. A sampler with a larger nominal ESS will result in a more
accurate estimate of the posterior quantity of interest. The ESS is the nominal ESS normal-
ized for CPU run time, which is computed as ESS/S, where S is the seconds of CPU run
time.

Table 6 reports on the accuracy of the posterior mean using the ESS for our new joint
sampling approach and a regular Gibbs sampler for the SB-LSV model. The joint sampling
is much more efficient based on this criterion. For example, for the number of regimes K, the
new method is more than 100 times as efficient as the Gibbs sampler. This is due to the fact
that K is likely to be highly correlated in the Gibbs sampler but our posterior simulation

17CPU time is a measure of the time taken for a specific program to run, while wall clock time can
encompass the time for a specific program as well as other unrelated processes running on the computer.
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method samples the whole set of parameters as a single block.

5.8 Posterior Analysis

In this section, we discuss posterior estimates for the hierarchical SB-LSV AR(2) model.
Table 7 shows the prior and the posterior summary of the parameters. The posterior mean
of the structural change probability π is 0.03, which is less than its prior mean of 0.1. The
posterior mean implies an average duration of 8 years and 1 quarter. The 95% density
interval is narrower than that of the prior. Although the posterior mean of H is similar to
the prior, the density intervals are tighter than the prior intervals. On the other hand, the
prior and the posterior mean for the intercept β

0
are 0 and 0.73, respectively. The posterior

95% density interval of β
0

does not cover 0, which means that after a structural break the
new intercept tends to be positive. The expected value of χ does not change from the prior
to posterior but its density interval shrinks, which implies that the data confirm the prior
assumption. Lastly, for ν there is a significant rightward shift in the posterior.

The posterior means of the regression coefficients E(βt | Y1,T ), the standard deviations
E(σt | Y1,T ) and the structural change probabilities p(dt = 1 | Y1,T ) for t = 1, . . . , T , are
plotted in Figure 118 along with 0.90 density intervals. The top panel is the data. The
second panel plots the break probabilities over time. The middle panel plots the intercept
βt,0 over time. The persistence, which is the sum of AR coefficients βt,1 and βt,2 is plotted
in the fourth panel. The standard deviation σt is in the bottom panel. From the plot of
the break probabilities, we can visually identify 4 major breaks in the inflation process. The
first is in the mid-60’s, which is featured by an increase of the inflation level. The second
is in the early 70’s, which is associated with the oil crisis and characterized by an increase
of the persistence and the volatility. In the mid 80’s, a structural change decreased both
the persistence and the volatility, which is consistent with the great moderation. The last
break happened in the early 90’s, which decreased both the inflation level and its volatility
and coincides with the introduction of an inflation target by the Bank of Canada. Figured 1
shows that each break induces different dynamic patterns in the inflation process.

6 Conclusion

This paper builds on existing structural change models to provide an improved approach
to estimating and forecasting time series with multiple change-points. This methodology
obtains the analytic form of the predictive density by taking advantage of the conjugate
prior for the parameters that characterize each regime. The prior is modeled as hierarchical
to exploit the information across regimes to improve forecasts.

We discuss how to allow for breaks in the variance, the regression coefficients or both.
Duration dependent break probabilities can be used and one extension assumes the regime
duration has a Poisson distribution.

A new Markov chain Monte Carlo sampler is introduced to draw the parameters from
the posterior distribution efficiently. Each of the models sample the parameters jointly as

18At time t = 1, we plot p(dt = 1 | Y1,T ) = 0, because it is in the first regime by construction and not
marked as a change-point in this paper.
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one block which results in very good mixing and improved accuracy of posterior estimates.
We apply the model to Canadian inflation data. The best model is the hierarchical model

which allows the breaks in the regression coefficients and the variance to occur simultane-
ously. We discuss the importance of inflation targets introduced in the 1990s and investigate
if forecasts can be improved after this policy change. We identify 4 major change-points
in the Canadian inflation dynamics. Modeling breaks results in improvements in density
forecasts and point forecasts.

A Appendix

The appendix provides the additional details of posterior simulation for the following models.

A.1 Hierarchical SB-LSV Model

1. Sample π(i), β(i), H(i), χ(i), ν(i) | YT from the following proposal distributions.

(a) Sample π(i) | K(i−1) ∼ B(πa+K(i−1)−1, πb+T−K(i−1)) as in the non-hierarchical
model.

(b) Sample H(i) | {β(i−1)
k , σ

(i−1)
k }Kk=1 ∼W(A1, a1).

(c) Sample β(i) | H(i), {β(i−1)
k , σ

(i−1)
k }Kk=1 ∼ N(m1, (τ1H

(i))−1).

(d) Sample χ(i) | ν(i−1), {σ(i−1)
k }Kk=1 ∼ G(d1/2, c1/2).

(e) Sample ν(i) | ν(i−1) ∼ G
(

ζ
ν(i−1) , ζ

)
,

with

m1 =
1

τ1

(
τ0m0 +

K∑
i=1

σ−2
i βi

)

τ1 = τ0 +
K∑
i=1

σ−2
i

A1 =

(
A−1

0 +
K∑
i=1

σ−2
i βiβ

′
i + τ0m0m

′
0 − τ1m1m

′
1

)−1

a1 = a0 +K

d1 = d0 +
K∑
i=1

σ−2
i

c1 = c0 +Kν(i−1).

Accept the whole set Ψ(i) = (π(i), β(i), H(i), χ(i), ν(i)) with probability

min

{
1,

p(Ψ(i))

p(Ψ(i−1))

p(YT | Ψ(i))

p(YT | Ψ(i−1))

pprop(Ψ(i−1))

pprop(Ψ(i))

}
,
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where p(Ψ) is the prior density and pprop(Ψ) is the proposal density.

2. Sample {dt, βt, σt}Tt=1 | Ψ as in the non-hierarchical structural break model.

A.2 Hierarchical SB-V Model

The predictive likelihood is:

p(yt | dt, Yt−1, β) ∝
(

1 +
(yt − x′tβ)2

χ̂

)− (ν̂+1)
2

,

or

yt | dt, Yt−1, β ∼ t

(
x′tβ,

χ̂

ν̂
, ν̂

)
,

with the mean x′tβ and the variance χ̂
ν̂−2

, where

χ̂ = χ+ E ′t−dt+1,t−1Et−dt+1,t−1, ν̂ = ν + dt − 1

and Et−dt+1,t−1 = (et−dt+1, . . . , et−1)′ is the residual vector with et = yt − x′tβ. The posterior
sampling scheme consists of the following steps.

1. Sampling π(i), β(i), χ(i), ν(i) | YT from the following proposal distribution.

(a) Sample π(i) | K(i−1) ∼ B(πa +K(i−1)− 1, πb + T −K(i−1)) as the non-hierarchical
model.

(b) Sample β(i) | {σ(i−1)
k }Kk=1, ST ∼ N(β,H

−1
).

(c) Sample χ(i) | ν(i−1), {σ(i−1)
k }Kk=1 ∼ G(d1/2, c1/2).

(d) Sample ν(i) | ν(i−1) ∼ G
(

ζ
ν(i−1) , ζ

)
,

with

β = H
−1

(
Hβ +

T∑
t=1

xtyt
σ2
t

)
,

H = H +
T∑
t=1

xtx
′
t

σ2
t

,

d1 = d0 +
K∑
i=1

σ−2
i ,

c1 = c0 +Kν(i−1).

Accept the whole set Ψ(i) = (π(i), β(i), χ(i), ν(i)) with probability

min

{
1,

p(Ψ(i))

p(Ψ(i−1))

p(YT | Ψ(i))

p(YT | Ψ(i−1))

pprop(Ψ(i−1))

pprop(Ψ(i))

}
,

where p(Ψ) is the prior density and pprop(Ψ) is the proposal density.

2. Sample {dt, σt}Tt=1 | Ψ similarly to the non-hierarchical structural break model.
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A.3 Hierarchical SB-LS Model

The predictive density of yt | dt, Yt−1, σ is

yt | dt, Yt−1, σ ∼ N(x′tβ̂, x
′
tĤ
−1xt + σ2),

where β̂ = Ĥ−1(Hβ + σ−2X ′t−dt+1,t−1Yt−dt+1,t−1) and Ĥ = H + σ−2X ′t−dt+1,t−1Xt−dt+1,t−1.
The posterior sampler has the following steps.

1. Sample π(i), β(i), H(i), σ(i) | YT from the following proposal distributions.

(a) Sample π(i) | K(i−1) ∼ B(πa + K(i−1) − 1, πb + T − K(i−1)) as the in the non-
hierarchical model.

(b) Sample H(i) | {β(i−1)
k }Kk=1 ∼W(A1, a1).

(c) Sample β(i) | H(i), {β(i−1)
k }Kk=1 ∼ N(m1, (τ1H

(i))−1).

(d) Sample σ−2(i) | {β(i−1)
k }Kk=1, ST ∼ G(χ1/2, ν1/2),

with

m1 =
1

τ1

(
τ0m0 +

K∑
i=1

βi

)
,

τ1 = τ0 +K,

A1 =

(
A−1

0 +
K∑
i=1

βiβ
′
i + τ0m0m

′
0 − τ1m1m

′
1

)−1

,

a1 = a0 +K,

χ1 = χ0 +
T∑
t=1

(yt − xtβt)2,

ν1 = ν0 + T.

Accept the whole set Ψ(i) = (π(i), β(i), H(i), σ(i)) with probability

min

{
1,

p(Ψ(i))

p(Ψ(i−1))

p(YT | Ψ(i))

p(YT | Ψ(i−1))

pprop(Ψ(i−1))

pprop(Ψ(i))

}
,

where p(Ψ) is the prior density and pprop(Ψ) is the proposal density.

2. Sample {dt, βt}Tt=1 | Ψ similarly to the non-hierarchical structural break model.

A.4 Hierarchical SB-LS-V Model

1. Sample Dβ,1,T , {βt}Tt=1 | β,H, Y1,T , {σt}Tt=1. The conditional posterior distribution of

βt | dβ,t, β,H, Y1,t, {σt}Tt=1 is a normal distribution N(β̂, Ĥ), where β̂ = Ĥ−1(Hβ +
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t∑
τ=t−dβ,t+1

xτyτ
σ2
τ

) and Ĥ = H +
t∑

τ=t−dβ,t+1

xτx′τ
σ2
τ

). After integrating out βt, the predictive

distribution of yt+1 is a normal distribution,

yt+1 | dβ,t+1 = dβ,t + 1, β,H, Y1,t, {σt}Tt=1 ∼ N(x′t+1β̂, x
′
t+1Ĥ

−1xt+1 + σ2
t+1).

Otherwise, if dβ,t+1 = 1, use β and H to replace β̂ and Ĥ.

The filtered probability of p(dβ,t | Y1,t, {σt}Tt=1) and the sampler of Dβ,1,T | Y1,t, {σt}Tt=1

is computed in a similar way to the sampler discussed in Section 2.

Each distinct β∗i is sampled from a normal distribution N(βi, H
−1

i ), where βi =

H
−1

i (Hβ +
∑
sβ,t=i

xtyt
σ2
t

) and H i = H +
∑
sβ,t=i

xtx′t
σ2
t

. The regime indicator sβ,t has simi-

lar interpretation as st in Section 2.1. There is a one-to-one relationship between the
set Sβ,1,T = (sβ,1, . . . , sβ,T ) and Dβ,1,T .

2. Sample Dσ,1,T , {σt}Tt=1 | χ, ν, YT , {βt}Tt=1. The conditional posterior distribution of

σ−2
t | dσ,t, χ, ν, Y1,t, {βt}Tt=1 is a gamma distribution G( χ̂

2
, ν̂

2
), where ν̂ = ν + dσ,t, χ̂ =

χ + E ′t−dσ,t+1,tEt−dσ,t+1,t, Et−dσ,t+1,t = (et−dσ,t+1, . . . , et)
′ and et = yt − x′tβt. After

integrating out σt, the predictive distribution of yt+1 is a Student-t distribution,

yt+1 | dσ,t+1 = dσ,t + 1, χ, ν, Y1,t, {βt}Tt=1 ∼ t

(
x′t+1βt+1,

χ̂

ν̂
, ν̂

)
,

with density proportional to
(

1 +
(yt+1−x′t+1βt+1)2

χ̂

)− ν̂+1
2

. Otherwise, if dσ,t+1 = 1, use χ

and ν to replace χ̂ and ν̂. Each distinct σ∗i is sampled based on a gamma distribution
as σ∗−2

i ∼ G(χ
2
, ν

2
), where χ = χ +

∑
sσ,t=i

e2
t , ν = ν + d∗σ,i, and d∗σ,i is the duration of

regime i. The regime indicator sσ,t has similar interpretation as st in Section 2.1. There
is a one-to-one relationship between the set Sσ,1,T = (sσ,1, . . . , sσ,T ) and Dσ,1,T .

3. Sample πβ, πσ | Dβ, Dσ. Let Kβ and Kσ represent the number of distinct β∗i ’s and
σ∗i ’s, then the break probabilities πβ and πσ are sampled from beta distributions,
B(πβ,a +Kβ − 1, πβ,b + T −Kβ) and B(πσ,a +Kσ − 1, πσ,b + T −Kσ), respectively.

4. Sample β,H | {β∗i }
Kβ
i=1. The conditional posterior distribution is H | {β∗i }

Kβ
i=1 ∼

W(A1, a0) and β | H, {β∗i }
Kβ
i=1 ∼ N(m1, (τ1H1)−1), where A1 = (A−1

0 +
∑
β∗i β

∗
i +

τ0m0m
′
0 − τ1m1m

′
1)−1, a1 = a0 +Kβ, τ1 = τ0 +Kβ and m1 = τ−1

1 (τ0m0 +
∑
β∗i ).

5. Sample χ | ν, {σ∗i }Kσi=1. The notation Kσ is the number of distinct σ∗i ’s. The conditional

posterior is χ | ν, {σ∗i }Kσi=1 ∼ G(d1

2
, c1

2
), where d1 = d0 +

∑
σ∗−2
i and c1 = c0 +Kσν.

6. Sample ν | χ, {σ∗i }Kσi=1. Use the proposal distribution ν(i) ∼ G
(

ζ
ν(i−1) , ζ

)
and accept

with the Metropolis-Hastings method. The conditional posterior density is propor-

tional to exp(− ν
ρ0

)

(
(
χ

2 )
ν
2

Γ( ν
2

)

)Kσ (∏
σ∗−2
i

)ν/2
.
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A.5 Hierarchical DDSB-LSV Model

1. Sampling λ(i), β(i), H(i), χ(i), ν(i) | YT from the following proposal distributions.

(a) Sample λ(i) by a random walk proposal distribution.

(b) Sample H(i) | {β(i−1)
k , σ

(i−1)
k }Kk=1 ∼W(A1, a1).

(c) Sample β(i) | H(i), {β(i−1)
k , σ

(i−1)
k }Kk=1 ∼ N(m1, (τ1H

(i))−1).

(d) Sample χ(i) | ν(i−1), {σ(i−1)
k }Kk=1 ∼ G(d1/2, c1/2).

(e) Sample ν(i) | ν(i−1) ∼ G( ζ
ν(i−1) , ζ),

with

m1 =
1

τ1

(
τ0m0 +

K∑
i=1

σ−2
i βi

)
,

τ1 = τ0 +
K∑
i=1

σ−2
i ,

A1 =

(
A−1

0 +
K∑
i=1

σ−2
i βiβ

′
i + τ0m0m

′
0 − τ1m1m

′
1

)−1

,

a1 = a0 +K,

d1 = d0 +
K∑
i=1

σ−2
i ,

c1 = c0 +Kν(i−1).

Accept the whole set Ψ(i) = (λ(i), β(i), H(i), χ(i), ν(i)) with probability

min

{
1,

p(Ψ(i))

p(Ψ(i−1))

p(YT | Ψ(i))

p(YT | Ψ(i−1))

pprop(Ψ(i−1))

pprop(Ψ(i))

}
,

where p(Ψ) is the prior density and pprop(Ψ) is the proposal density.

2. Sample {dt, βt, σt}Tt=1 | Ψ as done in the non-hierarchical structural break model.
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Table 1: Forecast Performance: 1961Q1 – 2012Q2

Log ML Log BF RMSFE DM p-value HK-MASE

Hie SB-LSV AR(1) -138.8 8.0 0.47 0.16 0.87
Hie SB-LSV AR(2) -130.8 0.46 0.84
Hie SB-LSV AR(3) -137.5 6.7 0.47 0.24 0.85
KP AR(1) -145.1 14.3 0.48 0.16 0.87
KP AR(2) -154.4 23.6 0.50** 0.02 0.92
KP AR(3) -157.2 26.4 0.53*** 0.00 0.96
Hie SB-LS-V AR(1) -180.2 49.4 0.54*** 0.00 0.99
Hie SB-LS-V AR(2) -205.7 74.9 0.55*** 0.00 1.00
Hie SB-LS-V AR(3) -199.3 68.5 0.53*** 0.00 0.97
Hie SB-V AR(1) -162.0 31.2 0.54*** 0.00 0.98
Hie SB-V AR(2) -145.2 14.4 0.49** 0.03 0.89
Hie SB-V AR(3) -145.0 14.2 0.49** 0.04 0.89
Hie SB-LS AR(1) -145.0 14.2 0.47 0.27 0.85
Hie SB-LS AR(2) -150.6 19.8 0.47 0.11 0.86
Hie SB-LS AR(3) -155.5 24.7 0.48* 0.06 0.87
Hie DDSB-LSV AR(1) -156.8 26.0 0.47 0.19 0.86
Hie DDSB-LSV AR(2) -161.4 30.4 0.47 0.28 0.86
Hie DDSB-LSV AR(3) -167.0 36.2 0.48 0.16 0.87
Nonhie SB-LSV AR(1) -163.2 32.4 0.51*** 0.00 0.94
Nonhie SB-LSV AR(2) -154.4 23.6 0.49** 0.04 0.89
Nonhie SB-LSV AR(3) -154.5 23.7 0.49** 0.04 0.89
Nonhie SB-LSV(π = 0.01) AR(1) -161.4 30.6 0.51*** 0.00 0.94
Nonhie SB-LSV(π = 0.01) AR(2) -152.6 21.8 0.48* 0.06 0.88
Nonhie SB-LSV(π = 0.01) AR(3) -152.9 22.1 0.48* 0.07 0.88
AR(1) -168.1 37.3 0.54*** 0.00 0.98
AR(2) -151.5 20.7 0.49** 0.03 0.90
AR(3) -151.4 20.6 0.49* 0.05 0.89
AR(1)-GARCH(1,1) -168.6 37.8 0.58*** 0.00 1.03
AR(2)-GARCH(1,1) -148.3 17.5 0.50*** 0.01 0.91
AR(3)-GARCH(1,1) -150.0 19.2 0.51*** 0.00 0.94

DM is a Diebold-Mariano test for squared error loss. The notations ***, ** and * mean that
the test is significant at 1%, 5% and 10% level. We compare the hierarchical (Hie) SB-LSV
AR(2) model with the other models. Log ML is the log-marginal likelihood, Log BF is the
associated log-Bayes factor of the model with the SB-LSV AR(2) model, RMSFE is the root
mean square forecast error and HK-MASE is the mean absolute scaled error from Hyndman
and Koehler.
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Table 2: Sub-sample Forecast Performance

From 1978Q1-2012Q2

Log PL Log BF RMSFE DM p-value HK-MASE
Hie SB-LSV AR(2) -76.1 0.43 0.84
KP AR(1) -84.5 9.3 0.47 0.11 0.88
Hie SB-LS-V AR(1) -121.8 45.7 0.52*** 0.00 1.04
Hie SB-V AR(3) -87.2 11.1 0.46* 0.06 0.90
Hie SB-LS AR(1) -83.3 7.2 0.42 0.54 0.82
Hie DDSB-LSV AR(1) -85.1 9.0 0.42 0.39 0.81
Nonhie SB-LSV AR(2) -93.7 17.6 0.46 0.15 0.90
AR(3) -91.6 15.5 0.46* 0.08 0.90
AR(2)-GARCH(1,1) -89.9 13.8 0.47** 0.05 0.93

From 1978Q1-1990Q4

Log PL Log BF RMSFE DM p-value HK-MASE
Hie SB-LSV AR(2) -30.9 0.44 0.89
KP AR(1) -33.5 2.6 0.45 0.89 0.86
Hie SB-LS-V AR(1) -53.6 22.7 0.51* 0.08 1.00
Hie SB-V AR(3) -32.8 1.9 0.45 0.92 0.86
Hie SB-LS AR(1) -34.9 4.0 0.44 0.69 0.85
Hie DDSB-LSV AR(1) -35.6 4.7 0.43* 0.09 0.83
Nonhie SB-LSV AR(2) -35.4 4.5 0.45 0.93 0.88
AR(3) -34.3 3.4 0.44 0.94 0.86
AR(2)-GARCH(1,1) -32.5 1.6 0.45 0.80 0.89

From 1991Q1-2012Q2

Log PL Log BF RMSFE DM p-value HK-MASE
Hie SB-LSV AR(2) -45.3 0.42 0.82
KP AR(1) -51.0 5.7 0.48* 0.10 0.91
Hie SB-LS-V AR(1) -68.3 23.0 0.52*** 0.00 1.08
Hie SB-V AR(3) -54.4 9.1 0.46** 0.04 0.94
Hie SB-LS AR(1) -48.4 3.1 0.41 0.64 0.80
Hie DDSB-LSV AR(1) -49.5 4.2 0.42 0.98 0.81
Nonhie SB-LSV AR(2) -58.3 13.0 0.46 0.13 0.92
AR(3) -57.3 12.0 0.47* 0.04 0.93
AR(2)-GARCH(1,1) -57.4 12.1 0.48* 0.04 0.98

DM is a Diebold-Mariano test for squared error loss. The notations ***, ** and * mean that
the test is significant at 1%, 5% and 10% level. We compare the hierarchical (Hie) SB-LSV
AR(2) model with the other models. Log PL is the log-predictive likelihood, Log BF is the
associated log-Bayes factor of the model with the SB-LSV AR(2) model, RMSFE is the root
mean square forecast error and HK-MASE is the mean absolute scaled error from Hyndman
and Koehler.
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Table 3: Forecasts in the Presence of Inflation Targeting

Log PL Log BF RMSFE DM p-value HK-MASE

From the first quarter after inflation targeting (1991Q2-2012Q2)

Hie SB-LSV AR(2) -41.8 0.40 0.82
AR(1) -51.1 9.3 0.36 0.15 0.78
AR(2) -52.4 10.6 0.37 0.28 0.81
AR(3) -53.0 11.2 0.38 0.31 0.81
2% target 0.36* 0.10 0.75

From the first quarter of 1%− 3% target (1994Q1-2012Q2)

Hie SB-LSV AR(2) -32.1 0.37 0.82
AR(1) -45.2 13.1 0.35 0.50 0.84
AR(2) -45.8 13.7 0.35 0.56 0.86
AR(3) -46.3 14.2 0.35 0.63 0.86
2% target 0.35 0.41 0.81

DM is a Diebold-Mariano test for squared error loss. The notations ***, ** and * mean
that the test is significant at 1%, 5% and 10% level. We compare the hierarchical (Hie)
SB-LSV AR(2) model with the other models. Log PL is the log-predictive likelihood,
Log BF is the associated log-Bayes factor of the model with the SB-LSV AR(2) model,
RMSFE is the root mean square forecast error and HK-MASE is the mean absolute
scaled error from Hyndman and Koehler.
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Table 4: Subjective Forecasting

Log PL Log BF RMSFE DM p-value HK-MASE

From the first quarter of inflation targeting(1991Q1-2012Q2)
Subjective Hie SB-LSV AR(2) -37.5 0.39 0.80
Hie SB-LSV AR(2) -45.3 7.8 0.42 0.40 0.82
AR(1) -58.1 20.6 0.47 0.11 0.84
AR(2) -59.4 20.9 0.48* 0.07 0.89
AR(3) -60.4 22.9 0.50** 0.03 0.93
2% target 0.40 0.80 0.77

From the first quarter after inflation targeting(1991Q2-2012Q2)
Subjective Hie SB-LSV AR(2) -35.6 0.37 0.77
Hie SB-LSV -41.8 6.2 0.40 0.22 0.82
AR(1) -51.1 15.5 0.36 0.90 0.78
AR(2) -52.4 16.8 0.37 0.76 0.81
AR(3) -53.0 17.4 0.38 0.51 0.81
2% target 0.36 0.40 0.75

From the first quarter of 1%− 3% target (1994Q1-2012Q2)
Subjective Hie SB-LSV AR(2) -28.3 0.35 0.81
Hie SB-LSV -32.1 3.8 0.37 0.41 0.82
AR(1) -45.2 16.9 0.35 0.80 0.84
AR(2) -45.8 17.5 0.35 0.89 0.86
AR(3) -46.3 18.0 0.35 0.97 0.86
2% target 0.35 1.00 0.81

DM is a Diebold-Mariano test for squared error loss. The notations ***, ** and * mean
that the test is significant at 1%, 5% and 10% level. We compare the hierarchical (Hie)
SB-LSV AR(2) model with the other models. Log PL is the log-predictive likelihood,
Log BF is the associated log-Bayes factor of the model with the SB-LSV AR(2) model,
RMSFE is the root mean square forecast error and HK-MASE is the mean absolute
scaled error from Hyndman and Koehler.
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Table 5: Forecasting with Umemployment or Industrial Production as Predictors

Log ML Log BF RMSFE DM p-value HK-MASE
Hie SB-LSV AR(1) -88.4 3.5 0.45 0.65 0.85
Hie SB-LSV AR(2) -87.2 2.3 0.44 0.83
Hie SB-LSV AR(3) -93.3 8.4 0.48*** 0.01 0.92

Hie SB-LSV AR(1) + IP(1) -84.9 0.45 0.41 0.85
Hie SB-LSV AR(1) + Um(1) -90.8 5.9 0.46 0.23 0.86
Hie SB-LSV AR(1) + IP(2) -86.0 1.1 0.46 0.30 0.84
Hie SB-LSV AR(1) + Um(2) -96.3 11.4 0.49** 0.03 0.91
Hie SB-LSV AR(1) + IP(3) -87.7 2.8 0.47* 0.09 0.88
Hie SB-LSV AR(1) + Um(3) -103.4 18.5 0.49** 0.02 0.94

Hie SB-LSV AR(2) + IP(1) -88.5 3.6 0.46 0.19 0.85
Hie SB-LSV AR(2) + Um(1) -93.9 9.0 0.46* 0.04 0.88
Hie SB-LSV AR(2) + Um(1) & IP(1) -96.7 11.8 0.49*** 0.00 0.94
Hie SB-LSV AR(2) + Um(2) & IP(2) -104.6 19.7 0.50*** 0.00 0.99

DM is a Diebold-Mariano test for squared error loss. The notations ***, ** and * mean that
the test is significant at 1%, 5% and 10% level. We compare the hierarchical (Hie) SB-LSV
AR(2) model with the other models. Log PL is the log-predictive likelihood, Log BF is the
associated log-Bayes factor of the model with the SB-LSV AR(2) model, RMSFE is the root
mean square forecast error and HK-MASE is the mean absolute scaled error from Hyndman
and Koehler.

Table 6: Comparison of Posterior Sampling Efficiency

nominal ESS ESS
Gibbs Sampler Joint Sampler Gibbs Sampler Joint Sampler

π 287.4 1250 0.43 10.2
β
0

326.8 2000 0.49 16.3

β
1

211.9 1678 0.32 13.6

β
2

6172 2994 9.30 24.3

H00 1519 1845 2.29 15.0
H01 1510 1000 2.27 8.13
H02 10570 4717 15.9 38.3
H11 4347 2941 6.55 23.9
H12 1582 4167 2.38 33.9
H22 3703 3571 5.58 29.0
χ 78.9 151 0.12 1.23
ν 106.6 119 0.16 0.97

K 75.2 1613 0.11 13.1

The nominal ESS is calculated as R
[
1 + 2

∑τ
i=1

τ−i
τ ρ̂i

]−1
where R is the number of

posterior samples and ρ̂i is the sample autocorrelation. The ESS is the nominal ESS
normalized for CPU run time, which is computed as ESS/S, where S is the seconds of
CPU run time.
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Table 7: Posterior Summary of the Hierarchical SB-LSV AR(2)
Model

Prior Posterior
Mean 0.95DI Mean Sd 0.95 DI

π 0.1 (0.003, 0.34) 0.03 0.01 (0.01, 0.06)
β
0

0.0 (-3.08, 3.08) 0.73 0.21 (0.32, 1.14)

β
1

0.0 (-3.08, 3.08) -0.07 0.18 (-0.42, 0.29)

β
2

0.0 (-3.08, 3.08) -0.09 0.17 (-0.26, 0.45)

H00 1.0 (0.16, 2.52) 1.06 0.38 (0.46, 1.94)
H01 0.0 (-0.91, 0.91) -0.02 0.27 (-0.56, 0.50)
H02 0.0 (-0.91, 0.91) 0.04 0.28 (-0.55, 0.60)
H11 1.0 (0.16, 2.52) 1.16 0.40 (0.51, 2.05)
H12 0.0 (-0.91, 0.91) 0.06 0.29 (-0.51, 0.62)
H22 1.0 (0.16, 2.52) 1.25 0.43 (0.57, 2.23)
χ 1.0 (0.12, 2.79) 0.93 0.46 (0.30, 2.09)
ν 2.0 (0.05, 7.38) 5.37 3.01 (1.30, 12.7)
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Figure 1: The top panel display quarterly Canadian inflation over 1961Q1-2012Q2. The
second panel shows the posterior probability of a structural break followed by the posterior
mean (solid line) of the intercept, the sum of the autoregression coefficients, and the standard
deviation for the hierarchical SB-LSV model with an AR(2) structure. The dashed lines show
the 0.90 density intervals.
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