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a b s t r a c t

This paper extends the existing fully parametric Bayesian literature on stochastic volatility to allow for
more general return distributions. Instead of specifying a particular distribution for the return innovation,
nonparametric Bayesianmethods are used to flexiblymodel the skewness and kurtosis of the distribution
while the dynamics of volatility continue to bemodeled with a parametric structure. Our semiparametric
Bayesian approach provides a full characterization of parametric and distributional uncertainty. AMarkov
chain Monte Carlo sampling approach to estimation is presented with theoretical and computational
issues for simulation from the posterior predictive distributions. An empirical example compares the new
model to standard parametric stochastic volatility models.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

This paper proposes a model of asset returns that draws
from the existing literature on autoregressive stochastic volatility
(SV) models and the advances made in Bayesian nonparametric
modeling and sampling to create a semiparametric SV model. By
applying both parametric and nonparametric features to the return
process, an estimable SV model with a flexible nonparametric
innovation distribution is provided. The nonparametric portion of
the model consists of an infinitely ordered mixture of normals
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whose component probabilities and parameters are modeled with
a particular Bayesian prior—the Dirichlet process mixture prior
(DPM). Under the DPM representation of the returns conditional
distribution, our model produces a more robust predictive density
of returns than parametric SVmodels. The paper takes a likelihood
based approach to model inference and provides exact finite
sample properties, including a full characterization of parametric
and distributional uncertainty.
There exists a long history of modeling asset returns with a

mixture of normals (see Press, 1967; Praetz, 1972; Clark, 1973;
Gonedes, 1974; Kon, 1984). These early mixture models produced
fat-tailed behavior but could not capture the dynamic clustering
observed in the conditional variance of returns. SV models were
designed to fit this time-varying behavior (see Taylor, 1986; Har-
vey et al., 1994). They consist of a continuous mixture of nor-
mals where their variances follow a dynamic stochastic process.
However, parametric SVmodels have not fully captured the asym-
metries and leptokurtotic behavior present in return data (see Gal-
lant et al., 1997; Mahieu and Schotman, 1998; Liesenfeld and Jung,
2000; Meddahi, 2001; Durham, 2006). These characteristics play
an important role in the pricing of derivatives, the measuring and
managing of risk, and in portfolio selection. A flexible nonparamet-
ric version of the SVmodel will be useful to risk and portfolioman-
agers alike.
The DPM consists of modeling the probabilities and parameters

of an infinitely ordered mixture model with the Dirichlet process
prior of Ferguson (1973). As a Bayesian nonparametric estimator
of a unknown distribution, the DPM offers a number of attractive
features; (i) the DPM spans the class of continuous distributions
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(Escobar andWest, 1995; Ghosal et al., 1999), (ii) the DPM is more
flexible and realistic than a mixture model with a predetermined
number of components, (iii) the Dirichlet process prior helps
determine the number of mixture clusters that best fits the data,
(iv) as an almost surely discrete prior it is parsimonious, (v) as a
conjugate prior it is easy to use and facilitates Gibbs sampling, and
(vi) it works well in practice.1
This paper provides a flexible semiparametric stochastic volatil-

ity, Dirichlet process mixture model (SV-DPM) by combining a
nonparametric independently identically distributed DPM model
of innovations scaled by a autoregressive model of the return’s la-
tent conditional variance process.2 The SV-DPM will nest within it
parametric versions of the SV model. We also show how to esti-
mate a restricted version of the model (SV-DPM-P) in which only
the precision parameters are governed by the Dirichlet process
(DP) prior. A Markov chain Monte Carlo (MCMC) sampler is con-
structed to estimate the unknown parameters of the SV-DPM. Our
MCMC algorithm extends the DPM samplers of West et al. (1994)
and MacEachern and Müller (1998) to the time-varying structure
of the SV model. Because volatility is independent from the DPM,
a tractable efficient posterior sampler is possible. Conditional on
the value of the other unknowns, one block of our sampler con-
sists of drawing the parameters of the clusters, while the other
blocks draw the parameters and volatilities for the SV model’s la-
tent volatility process (see Chib et al., 2002; Eraker et al., 2003;
Jacquier et al., 1994, 2004; Kim et al., 1998). In addition to provid-
ing smoothed estimates of the latent volatility process, the sampler
also generates the predictive density and likelihood of returns that
fully accounts for the uncertainty in the latent volatility process as
well as the unknown return distribution.
A second contribution of the paper is a simple random block

sampler of latent volatility. We extend the Fleming and Kirby
(2003) block sampler of volatility by including the return data in
the proposal distribution. This results in better candidate draws
to the Metropolis–Hastings sampler resulting in lower correlation,
leading to fewer sweeps being required. Our simple random block
sampler of volatility can be used for all the SV models discussed in
the paper.
We evaluate our SV-DPM model against standard SV models

found in the literature; the SV model with normal innovations
(SV-N) and the SV model with Student-t innovations (SV-t). In an
empirical application with daily CRSP return data over the period
1980–2006, the predictive distribution for the SV-DPM model is
very different from those for the parametric SV models. The SV-
DPM model’s predictive density displays negative skewness and
kurtosis whereas neither the SV-N nor the SV-t does. The esti-
mate of the variance of log volatility is considerably smaller for the
semiparametric model, indicating that some tail thickness in con-
ditional returns is better captured by the DPM.
The results highlight important differences in the SV-DPM

model’s predictive density and parameter estimates relative to
parametric alternatives in a large sample setting. Next we consider
what the model can offer in a small sample analysis. We compare
the relative quality of the density forecasts of the new models by
pooling the log predictive score function (Geweke and Amisano,
2008) over a shorter sample of daily return data from2006 to 2008.

1 Examples of the DPM being used in economics include Chib and Hamilton
(2002), Conley et al. (2008), Griffin and Steel (2004), Hirano (2002), Jensen (2004),
Kacperczyk et al. (2005) and Tiwari et al. (1988). Jensen (2004) uses a DPM tomodel
the distribution of additive noise of log-squared returns while in this paper we are
concerned with the conditional distribution of returns.
2 The Dirichlet process prior has been used in autoregressive time-series
models (Lau and So, 2008;Muller et al., 1997) and inmodels with ARCH effects (Lau
and Siu, 2008). A time-dependent Dirichlet process is introduced in Griffin and Steel
(2006).
The models in the pool are the SV-DPM, SV-N, SV-t, and SV-DPM-P
models. This latter model displays the largest weight of 0.73 in the
optimal pooling score function. Dropping this specification from
the pool results in a decrease of 3 points in the log predictive score.
We conclude that the SV-DPM models can provide improvements
in both large and small samples.
The paper is organized as follows. The SV-DPM and SV-DPM-P

models are constructed in Section 2. Section 3 presents Bayesian
inference for the SV-DPM model and Section 4 discusses fea-
tures of the model. An application to daily return data is found in
Section 5. Section 6 contains our conclusions and suggestions for
possible future extensions for our Bayesian semiparametric SV
model. The working paper version Jensen and Maheu (2008) in-
cludes additional details and simulation results.

2. SV-DPMmodels

We model the return of an asset with a stochastic volatility
model whose unconditional return distribution is modeled non-
parametrically with the Dirichlet process mixture prior. The
stochastic volatility, Dirichlet process mixture model (SV-DPM), is
defined as

yt |fN , ht , ηt , λ2t
⊥

∼ N
(
ηt , λ

−2
t exp{ht}

)
, (1)

ht |ht−1, δ, σ 2v ∼ N(δht−1, σ
2
v ), and ht ⊥ yt , (2)(

ηt
λ2t

)∣∣∣∣G iid∼ G, (3)

G|G0, α ∼ DP(G0, α), (4)

G0(ηt , λ2t ) ≡ N
(
m, (τλ2t )

−1)
− Γ (v0/2, s0/2), (5)

where
⊥

∼ denotes independently distributed.
At time t = 1, . . . , n the continuously compounded return

from holding a financial asset equals yt and the latent log volatility
ht follows the first-order autoregressive (AR) process defined by
Eq. (2) with the AR parameter δ. Identification of the SV-DPM
model requires the unconditional mean of ht to be set to zero.
The intercept is subsumed into λ2t . Stationary returns are ensured
by restricting δ to the interval (−1, 1). This guarantees a finite
mean and variance for the volatility process, ht . In Eq. (2), ht ⊥ yt
assumes away any leverage effects (see Jacquier et al., 2004; Yu,
2005; Omori et al., 2007).3
Eqs. (3)–(5) places a nonparametric prior on the random un-

conditional return distribution. It consists of an infinite ordered
mixture of normals, a basis that is dense over the entire class of
continuous distributions.4 Eq. (3)–(4) assume themixture’s proba-
bilities and parameters ηt and λ2t follow the Dirichlet process prior
(DP) of Ferguson (1973). The DP prior consists of the base distri-
bution G0, defined in Eq. (5) as a conjugate conditional normal-
gamma distribution, and a nonnegative precision parameter α.
Our SV-DPM model also has the Sethuraman (1994) represen-

tation

yt |fN , ht
⊥

∼

∞∑
j=1

VjfN
(
· |cj, d−2j exp{ht}

)
, (6)

where fN
(
· |cj, d−2j exp{ht}

)
is a normal density with mean cj and

variance d−2j exp{ht}, with the mixture weights distributed as

3 Leverage effects can be included but the DPM portion of the model becomes
computationally challenging. As a result, we choose to focus on a SVmodel without
leverage effects and leave this a topic for future research.
4 See Lo (1984), Ghosal et al. (1999) and Ghosal and van der Vaart (2007) for a
discussion on the posterior consistency of the DPMmodel.
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V1 = W1, and Vj = Wj
∏j−1
s=1(1 − Ws), where Wj ∼ Beta(1, α).

The mixture parameters (cj, d2j ) have the same prior as (ηt , λ
2
t )—

the normal-gamma distribution of Eq. (5).
The discrete nature of Eq. (6) implies clustering in the mixture

parameters cj and d2j . Except for some pathological cases analytical
expressions for the DPM’s posterior expectations are not possible.
Fortunately, there are Gibbs sampling techniques based on Escobar
and West (1995) that exploit the Blackwell and MacQueen (1973)
Polya urn representation of the DP prior to integrate out the
mixture probabilities Vj and draw the k finite clusters (cj, d2j ), j =
1, . . . , k, where k < n, and cluster weights nj/n, where nj is the
number of observations assigned to the jth cluster.
In another nonparametric DPM representation of the uncondi-

tional return distribution, we use a mixture of normals centered at
zero with a DP prior placed only on the mixture probabilities and
the mixture precision parameter λ2t . We call this semiparametric
stochastic volatility model the SV-DPM-P model. Its complete def-
inition is

yt |fN , ht , µ, λ2t
⊥

∼ N
(
µ, λ−2t exp{ht}

)
,

ht |ht−1, δ, σ 2v ∼ N(δht−1, σ
2
v ), and ht ⊥ yt ,

λt |G
iid
∼ G,

G|G0, α ∼ DP(G0, α),
G0(λ2t ) ≡ Γ (v0/2, s0/2).
Our SV-DPMclass of volatilitymodels aremore flexible than the

existing class of parametric SVmodels inmodeling the distribution
of yt . In the terminology of Müller and Quintana (2004), SV-
DPM models ‘‘robustifies’’ the class of parametric SV models. By
modeling the innovation distribution of yt with a Dirichlet process
mixture, diagnostics and sensitivity analysis can be conducted
by nesting parametric SV models within the SV-DPM model. For
example, when V1 = 1, Vj = 0 for j > 1, the SV-DPM model
equals the autoregressive, stochastic volatility model of Jacquier
et al. (1994). The SV-t model of Harvey et al. (1994) with ν degrees
of freedom is also nested within the SV-DPM model by setting
ηt = 0 for all t , letting α → ∞, and modeling the precision
parameter prior as λ2t ∼ G0 ≡ Γ (ν/2, ν/2).
Geweke and Keane (2007) also model the return of an asset

as a mixture with their smoothly mixing regression model. But
unlike the infinite ordered mixture representation of the SV-DPM
model, the smoothly mixing regression model sets the number of
mixture clusters a priori. Probabilities of a particular cluster are
then determined by a multinomial probit whose covariates are a
nonlinear combination of lagged and absolute returns.

3. Bayesian inference

The inherent difficulty with all stochastic volatility models,
regardless of the innovations being modeled parametrically or
nonparametrically, is the intractability of the SV’s likelihood
function. Because the log volatility process ht enters though the
variance of yt , the SV model’s likelihood function does not have an
analytical solution. Bayesian estimation of the SV model bridges
this problem by augmenting the model’s unknown parameters
with the latent volatilities and designing a hybrid Markov chain
Monte Carlo algorithm (Tanner and Wong, 1987) to sample from
the joint posterior distribution, π(ψ, h|y), where ψ = (δ, σv)

′,
h = (h1, . . . , hn)′ and y = (y1, . . . , yn)′ (see Jacquier et al., 1994;
Kim et al., 1998; Chib et al., 2002).
In the context of the SV-DPM models the additional unknown

mixture parameters φ = (φ1, . . . , φn)
′, where φt = (ηt , λ

2
t )

for the SV-DPM and φt = λ2t for SV-DPM-P, can be augmented
with ψ and h and included in the MCMC sampler of the
posterior π(ψ, h, φ|y). Since the likelihood function of SV models
is intractable and because we do not know the number of mixtures
of the nonparametric distribution or their values, we are precluded
from directly sampling from π(ψ, h, φ|y). Instead, we judiciously
break up the augmented posterior distribution into tractable
blocks of conditional posterior distributions and design a stylized
MCMC sampler for each block. The accuracy of the sampler and
its computational costs are dependent on how the blocks of the
unknowns are selected, on the level of dependency between the
conditional distributions and random variables, and on the type of
sampling algorithm used.
The blocking scheme that we design for the SV-DPM models

consists of iteratively sampling through the following conditional
distributions:

1. π(ψ |h),
2. π(h|y, ψ, φ),
3. π(φ|y, h),
4. π(α|φ),
5. π(µ|y, h, φ).

Step 5 is only requiredwith the SV-DPM-Pmodel. One full iteration
through each conditional distributions denotes a sweep of the
MCMC sampler.

3.1. The parameter sampler

Conditional on knowing the value of h, sampling from π(ψ |h)
in Step 1 is straightforward. Assume that the priors for δ and σ 2v
are independent, in other words, π(ψ) = π(δ)π(σ 2v ), where the
marginal prior distributions are π(δ) ∝ N(µδ, σ 2δ )I|δ|<1, a normal
truncated to the stationary region of δ’s parameter space, and
π(σ 2v ) ∼ Inv-Γ (vσ /2, sσ /2). Under this prior for ψ , draws from
δ, σ 2v |h are made by sequentially sampling from the conditional
marginal distributions, δ|h, σ 2v ∼ N (̂δ, σ̂

2
v )I(|δ| < 1), where

δ̂ = σ̂ 2δ


n∑
t=2
ht−1ht

σ 2v
+
µδ

σ 2δ

 , σ̂ 2δ =
σ 2v σ

2
δ

σ 2δ

n∑
t=2
h2t−1 + σ 2v

,

and σ 2v |h, δ ∼ Inv-Γ ((n−1+vσ )/2, [sσ +
∑n
t=2(ht−δht−1)

2
]/2).

If a draw from δ|h, σ 2v results in a realization outside the stationary
set, the draw of δ is discarded and sampling continues until a value
from within the parameter space is obtained.
To perform Step 5 for the SV-DPM-P model we assume π(µ) ∼

N(m, τ ). Given values for φ and h, we can rewrite the return
equation as

yt exp{−ht/2}λt = µ exp{−ht/2}λt + zt , zt ∼ NID(0, 1).

Given the conjugate nature of π(µ), draws of µ are made from
N(µ̄, τ̄ )where

µ̄ =

m/τ +
∑
t
yt exp{−ht}λ2t

1/τ +
∑
t
exp{−ht}λ2t

,

τ̄ =

(
1/τ +

∑
t

exp{−ht}λ2t

)−1
.

3.2. The latent volatility sampler

Drawing the latent volatilities is difficult and has attracted
the attention of the profession (see Jacquier et al., 1994; Pitt and
Shephard, 1997; Kim et al., 1998; Chib et al., 2002; Fleming and
Kirby, 2003). One option for drawing the volatilities of the SV-
DPM model is to apply an element-by-element volatility sampler.
Conditional on φ, the entire suite of existing element-by-element
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samplers given by Geweke (1994), Pitt and Shephard (1997), Kim
et al. (1998), and Jacquier et al. (2004) can be directly applied to
ỹt ≡ λt(yt − ηt) for the SV-DPM model and ỹt ≡ λt(yt − µ) for
SV-DPM-P.
Element-by-element samplers, however, are known to be very

inefficient and require throwing away a large number of initial
draws of h to reduce dependency on the starting values. Highly
persistenthts also lead to a strong correlation between the sampled
volatilities. As a result, a large number of sweeps must be carried
out. This becomes very taxing for the SV-DPM models since each
additional sweep also requires sampling from φ|y, h.
Ideally one would like to sample from h|y, ψ, φ in a single

draw (see Kim et al., 1998; Chib et al., 2002). This approach
eliminates the correlation between the drawn hs, but requires
approximating the log chi-squared distribution of log(yt −
ηt)
2
+ log λ2t with a finite order mixture of normals. While the

approximating mixture’s order, weights, means and variances
are known a priori, each observation’s cluster assignment is
not. Because we are already modeling the unconditional return
distribution nonparametrically we believe adding another layer
of complexity with another mixture of normals takes away from
the DPM prior flexibility to model the unconditional return
distribution.
Fortunately, less correlated draws of the volatilities can be

found by sampling random length blocks of volatilities instead
of the entire vector (see Pitt and Shephard, 1997; Elerian et al.,
2001; Fleming and Kirby, 2003). Our random length block sampler
partitions h into blocks of subvectors {h(t,τ )}, where h(t,τ ) =
(ht , ht+1, . . . , hτ )′, 1 ≤ t ≤ τ ≤ n, and the length of the subvector
lt = τ − t + 1 is randomly drawn from a Poisson distribution with
hyperparameter λh = 3; i.e., E[lt ] = 4.5 By letting the length be
random we ensure that with each sweep a different partition of h
is sampled, thus helping to reduce the degree of dependency that
would exist if lt were fixed. By lowering the level of correlation in
the draws of the h(t,τ ), we reduce the number of sweeps needed to
produce reliable estimates of the model parameters.
Because the desired density

π
(
h(t,τ )

∣∣ y, ht−1, hτ+1, ψ, φ)
∝ f

(
y|h(t,τ ), φ, ψ

)
π
(
h(t,τ )

∣∣ ht−1, hτ+1, ψ) ,
does not come from a standard distribution, we design a
Metropolis–Hastings (MH) sampler for the above target density
where we extend the sampler of Fleming and Kirby (2003) to
include the return data, y. Fleming and Kirby (2003) show that if
the log volatility process is approximated by the randomwalk ht =
ht−1 + σvvt then a reasonable proposal for the target distribution
is

h(t,τ )|ht−1, hτ+1, σ 2v ∼ N
(
m(t,τ ),Σ(t,τ )

)
, (7)

where the lt × 1 vector m(t,τ ) = (mt , . . . ,mτ )′ and the lt × lt
covariance matrix Σ(t,τ ) =

{
σ
(t)
i,j

}
i,j=t,...,τ

are defined by their

elements:

mt+i =
(lt − i)ht−1 + (i+ 1)hτ+1

lt + 1
, i = 0, . . . , lt − 1,

σ
(t)
i,j = σ

2
v

min(i, j)(1+ lt)− ij
lt + 1

, i = 1, . . . , lt ,

and, j = 1, . . . , lt .

The inverse of the covariance matrix for the proposal distribution
has the convenient tridiagonal form

5 λh was selected to minimize the numerical inefficiency values of the model
parameters based on several trial runs.
Σ−1(t,τ ) =


2/σ 2v −1/σ 2v 0 . . .

−1/σ 2v 2/σ 2v −1/σ 2v
. . .

0 −1/σ 2v 2/σ 2v
. . .

...
. . .

. . .
. . .


making evaluation of the proposal density’s quadratic term
(h(t,τ ) −m(t,τ ))′Σ−1(t,τ )(h(t,τ ) −m(t,τ )) quick and easy.
Since the proposal distribution in Eq. (7) ignores the informa-

tion found in the return vector, y(t,τ ) = (yt , . . . , yτ )′, a better pro-
posal distribution would be one that incorporates these data. Such
a distribution would help the MH sampler converge more quickly
and result in a better mixture of draws from the latent volatility’s
target distribution.
Once again the desired target density is

π(h(t,τ )|y(t,τ ), ht−1, hτ+1, ψ, φ)
∝ f (y(t,τ )|h(t,τ ), φ)π(h(t,τ )|ht−1, hτ+1, ψ),

≈ f (y(t,τ )|h(t,τ ), φ(t,τ )) fN
(
h(t,τ )

∣∣m(t,τ ),Σ(t,τ )) , (8)

where the random walk approximation of Fleming and Kirby
(2003) has been applied to π(h(t,τ )|ht−1, hτ+1, ψ). The likelihood
function

f (y(t,τ )|h(t,τ ), φ(t,τ ))

∝ exp
{
−0.5

(
ι′h(t,τ ) + ỹ2

′

(t,τ ) exp{−h(t,τ )}
)}
, (9)

with ι being a lt × 1 vector of ones, ỹ2(t,τ ) = (̃y2t , . . . , ỹ
2
τ )
′, and

exp{−h(t,τ )} = (exp{−ht}, . . . , exp{−hτ })′. Replacing the exp
{−h(t,τ )} vector in Eq. (9) with its first-order, Taylor series
approximation, exp{−h(t,τ )} ≈ D(t,τ )(ι + m(t,τ ) − h(t,τ )), where
the lt × lt diagonal matrix D(t,τ ) = diag{exp(−m(t,τ ))}, results in

exp
{
−0.5

(
ι′h(t,τ ) + ỹ2

′

(t,τ ) exp{−h(t,τ )}
)}

≤ exp
{
−0.5

(
ι′ − ỹ2

′

(t,τ )D(t,τ )
)
h(t,τ )

}
. (10)

Substituting the right hand side of Eq. (10) for the f (y(t,τ )|h(t,τ ),
φ(t,τ )) term in Eq. (8) and collecting terms in the quadratic form of
h(t,τ ) leads to our MH sampler’s fat-tailed proposal density:

fSt(h(t,τ )|ζ(t,τ ),Σ(t,τ ), ν)

∝

[
1+ (h(t,τ ) − ζ(t,τ ))′Σ−1(t,τ )(h(t,τ ) − ζ(t,τ ))/ν

]−(lt+ν)/2
where fSt(h(t,τ )|ζ(t,τ ),Σ(t,τ ), ν) is the density of a lt-variate
Student-t distribution with mean, ζ(t,τ ) = m(t,τ ) − 0.5Σ(t,τ )(ι −
D(t,τ )̃y2(t,τ )), covariance,Σ(t,τ )ν/(ν − 2), and ν degrees of freedom
(in the empirical example of Section 5 we set ν equal to 10). For
the endpoints h1 and hn, we generate h0 and hn+1 according to the
volatility dynamics and use the same proposal density.
Given the previous MCMC draw of h(t,τ ), the candidate draw,

ĥ(t,τ ) ∼ St(ζ(t,τ ),Σ(t,τ ), ν), will be accepted as a realization from
the target distribution with the MH probability as given in Box I.

3.3. The DPM sampler

Although the SV-DPM model in (6) implies an infinite number
of clusters, for a finite data set each sweep of theGibbs samplerwill
divide the data into a finite set of clusters. Conditional on a draw
ofψ and h, sampling from the posterior distribution φ|y, h is done
through a variant ofWest et al. (1994) andMacEachern andMüller
(1998) Gibbs samplers. To improve the efficiency of sampling
from φ|y, h, West et al. (1994) and MacEachern and Müller (1998)
appeal to draws from the equivalent distribution θ, s|y, h, where
θ = (θ1, . . . , θk)

′, k ≤ n, contains the unique elements from the
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min

{
f (y(t,τ )|φ(t,τ ), ĥ(t,τ )) π(̂h(t,τ )|ht−1, hτ+1, ψ)
f (y(t,τ )|φ(t,τ ), h(t,τ )) π(h(t,τ )|ht−1, hτ+1, ψ)

fSt(h(t,τ )|ζ(t,τ ),Σ(t,τ ), ν)

fSt (̂h(t,τ )|ζ(t,τ ),Σ(t,τ ), ν)
, 1

}

where f (y(t,τ )|φ(t,τ ), h(t,τ )) =
∏τ
j=t fN(yj|ηj, λ

−2
j exp{hj}) and π(h(t,τ )|ht−1, hτ+1, ψ) =

∏τ+1
j=t exp

{
−
(hj−δhj−1)2

2σ 2v

}
Box I.
vector φ. The n-length vector s contains the indicator variables st ,
t = 1, . . . , n, where st = j when φt = θj, j = 1, . . . , k. Together,
θ and s completely identify φ. In the following, θ (t) denotes the
unique elements of φ when the element φt is deleted. The number
of clusters in θ (t) is indexed from j = 1 toK(t).
To describe the sampler for θ, s|y, h we rewrite Eq. (1), the

compound return equation, as

y∗t = ηt exp{−ht/2} + λ
−1
t εt , εt

iid
∼ N(0, 1),

where y∗t ≡ yt exp{−ht/2}. Draws are nowmade from θ, s|y
∗ with

the following two-step procedure:

Step 1. Sample s and k by drawing φt = (ηt , λ2t ) for t = 1, . . . , n
from

φt |y∗t , θ
(t), s(t) ∼ c

α

α + n− 1
g(y∗t ) G(dφt |y

∗

t )

+
c

α + n− 1

K(t)∑
j=1

n(t)j f (y
∗

t |θj)δθj(dφt),

setting st = j when φt = θj, or st = k + 1 and k =
k+1 when φt is drawn from G(dφt |y∗t ). c is the integrating
constant.

Step 2. Given the s and k from Step 1, discard φ and sample θj =
(ηj, λ

2
j ), j = 1, . . . , k, from

θj|{y∗t : st = j} ∝
∏
t:st=j

fN
(
y∗t |ηj exp{−ht/2}, λ

−2
j

)
G0(dθj).

In Step 1 the probability of st equaling the jth cluster is propor-
tional to n(t)j , the number of other times that the jth cluster occurs
after dropping φt , times the likelihood that y∗t belongs to the jth
cluster, f (y∗t |θj) ≡ fN(y

∗
t |ηj exp{−ht/2}, λ

−2
j ). On the other hand,

the probability of st being assigned to a new cluster is proportional
to the predictive density:

g(y∗t ) ≡
∫
f (y∗t |φt)G0(dφt)dφt ,

=

∫
1√

2π exp{ht}λ−2t

× exp
{
−
(y∗t − ηt exp{−ht/2})

2

2λ−2t

}
G0(dφt)dφt ,

= fSt
(
y∗t |m exp{−ht/2}, (exp{ht} + τ)s0/(τv0), v0

)
,

= fSt(yt |m, (1+ τ exp{ht})s0/(τv0), v0),

where fSt(.|m, s, v) denotes the probability density function of a
Student-t distribution with mean m, variance vs/(v − 2), and v
degrees of freedom. If a new cluster is drawn, φt equals the new
cluster parameter θk+1 sampled from the posterior distribution:

G(dφt |y∗t ) ≡
f (y∗t |φt) G0(dφt)

g(y∗t )
.

By the conjugate nature of the normal-gamma prior, G0, and the
normality of the likelihood function, f (y∗t |φt),G(dφt |y

∗
t ), equals the

normal-gamma distribution:
λ2t |y
∗

t ∼ Γ (v/2, st/2),

ηt |y∗t , λ
2
t ∼ N

(
µt , (τ tλ

2
t )
−1) ,

where v = v0 + 1, st = s0 + (µt − y∗t )
2 exp{−ht} + (µt − m)2τ ,

with µt = τ
−1
t

(
τm+ y∗t exp{−ht/2}

)
and τ t = τ + exp{−ht}.

Step 2 consists of generating a new draw of φ, conditional on
the s and k sampled in Step 1, by sampling the unique mixture
parameters, θj, j = 1, . . . , k, from the linear regression model:

y∗t |st , ηj, λ
2
j ∼ N(ηj exp{−ht/2}, λ

−2
j ), (11)

where t ∈ {t ′ : st ′ = j}, and the prior of ηj and λ2j is distributed
according to the base distribution, G0. Conjugacy between the
normal-gamma base distribution, G0, and the likelihood function
in Eq. (11) leads to the posterior distribution θj|y∗, s, k being the
normal-gamma distribution

λ2j |y
∗, s, k ∼ Γ (vj/2, sj/2),

ηj|y∗, s, k, λ2j ∼ N
(
µj, (τ jλ

2
j )
−1) ,

where vj = v0+nj, sj = s0+sj+(µj−bj)2
∑
t:st=j exp{−ht}+(µj−

m)2τ , and µj = τ−1j
(
τm+ bj

∑
t:st=j exp{−ht}

)
, with τ j = τ +∑

t:st=j exp{−ht}, and bj being the ordinary least square estimate
from regressing y∗t on exp{−ht/2} over the set of observations
{t : st = j}. Lastly, sj =

∑
t:st=j

(
y∗t − bj exp{−ht/2}

)2; i.e., the
sum of squares of errors from the regression over the same set of
observations where st = j.

3.4. The DPM-P sampler

For the SV-DPM-P model draws of φ are again made from θ, s|y
butwith θ = (λ21, . . . , λ

2
k). The two-step DPM-P sampler involves:

Step 1. Sampling s and k by drawing λ2t for t = 1, . . . , n from

λt |yt , λ(t), s(t) ∼ c
α

α + n− 1
g(yt)G(dλ2t |yt)

+
c

α + n− 1

K(t)∑
j=1

n(t)j f (yt |µ, exp{ht}λ
−2
j )δλ2j

(dλ2t ),

where g(yt) = fSt(yt |µ, exp{ht}v0/s0, v0), and G(dλt |yt)
is the distribution Γ (v̄/2, s̄t/2) with v̄ = v0 + 1 and
s̄t = s0 + (yt − µ)2/ exp{ht}. c is the integrating constant.

Step 2. Given s and k from Step 1, sample λ2j for j = 1, . . . , k, from

λ2j |{yt : st = j} ∝
∏
t:sj=j

fN(yt |µ, exp{ht}λ−2j )G0(dλj)

which is the Γ (v̄j/2, s̄j/2) distribution with v̄j = v0 + nj
and s̄j = s0 +

∑
t:st=j(yt − µ)

2/ exp{ht}.

3.5. The α sampler

The DPM precision parameter α is sampled for both models
with the two-step algorithm of Escobar and West (1995). Since
y is conditionally independent of α when the mixture order, k,
parameter vector, φ, and state indicator vector, s, are all known,
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and because φ is also conditionally independent of α when both
k and s are known, the posterior of α is only dependent on k;
i.e., π(α|φ) = π(α|k) ∝ π(α)f (k|α). Assuming the gamma
distribution, Γ (a, b), where a > 0 and b > 0, is the prior for α,
exact draws from π(α|k) are made by first sampling the random
variable ξ fromπ(ξ |α, k) ∼ Beta(α+1, n), and secondly, sampling
α from the mixture π(α|ξ, k) ∼ πξΓ (a + k, b − ln ξ) + (1 −
πξ )Γ (a+k−1, b− ln ξ), where πξ/(1−πξ ) = (a+k−1)/[n(b−
ln ξ)].

4. Features of the SV-DPMmodel

After an initial burn-in phase, our MCMC algorithm for the SV-
DPM model produces a set of draws, {ψ (r), h(r), θ (r), s(r), α(r)}Rr=1,
from the desired posterior density, π(ψ, h, θ, s, α|y). Given these
drawswe can produce simulation consistent estimates of posterior
quantities. For example, the posterior mean of the AR parameter
for volatility is E[δ|y] ≈ R−1

∑R
r=1 δ

(r) where this approximation
can be made more precise by increasing the number of draws, R.6
In a similar way various quantities of the predictive density and
likelihood can be estimated.

4.1. Predictive density and likelihood

The key quantity of interest in density estimation is the pre-
dictive density. Gelfand and Mukhopadhyay (1995) discuss this
and more generally the estimation of linear functionals for DPM
models. Drawing on their findings, the in-sample predictive poste-
rior density for the SV-DPMmodel equals

f (Yt |y) =
∫
f (Yt |θ, ht , α) π(θ, ht , α|y)dθdhtdα,

≈
1
R

R∑
r=1

f
(
Yt |θ (r), h

(r)
t , α

(r)
)
, (12)

where Yt , t = 1, . . . , n, is the unobserved random return at time t ,
θ (r), h(r)t and α(r) are the rth draws from the posterior simulator.7
The conditional posterior density in Eq. (12) equals

f
(
Yt
∣∣∣θ (r), h(r)t , α(r) ) = α(r)

α(r) + n
g
(
Yt |h

(r)
t

)
+

k(r)∑
j=1

n(r)j
α(r) + n

fN
(
Yt
∣∣∣θ (r)j , h(r)t ) . (13)

For the SV-DPM model g(Yt |h
(r)
t ) = fSt(Yt |m, (1 + τ exp{h

(r)
t })

s0/(τv0), v0), and fN(Yt |θ
(r)
j , h

(r)
t ) = fN(Yt |η

(r)
j , λ

−2(r)
j exp{h(r)t }).

In the SV-DPM-P model g(Yt |h
(r)
t ) = fSt(Yt |µ, exp{h

(r)
t }v0/s0, v0),

and fN(Yt |θ
(r)
j , h

(r)
t ) = fN(yt |µ(r), λ

−2(r)
j exp{h(r)t }).

Eq. (13) shows the flexibility of modeling the SV return in-
novation distribution with the nonparametric DPM prior. In our
semiparametric SV model the conditional predictive density is a
weighted mixture of normals and Student-t densities, enabling it
to fit multi-modal distributions, negative or positive skewed dis-
tributions, and other non-Gaussian type behavior like fat tails.
Except for the additional structure of the stochastic volatility

process, the one-step-ahead, out-of-sample predictive density for
the SV-DPMmodel is the same as the predictive density of Escobar
and West (1995), p. 580. The SV-DPM model’s one-step-ahead
predictive return density is

6 For a full treatment of MCMC methods see Robert and Casella (1999).
7 To minimize notation we have omitted conditioning on n1, . . . , nk which is the
number of observations in each cluster.
f (Yn+1|y) =
∫
f (Yn+1|θ, hn+1, α)π(θ, hn+1, α|y)dθdhn+1dα,

≈
1
R

R∑
r=1

f
(
Yn+1

∣∣∣θ (r), h(r)n+1, α(r) ) , (14)

where the conditional density

f
(
Yn+1|θ (r), h

(r)
n+1, α

(r)
)
=

α(r)

α(r) + n
g
(
Yn+1|h

(n)
n+1

)
+

k(r)∑
j=1

n(r)j
α(r) + n

fN
(
Yn+1

∣∣∣θ (r)j , h(r)n+1 ) ,
has the same form as Eq. (13) but h(r)n+1 is a draw from N

(
δ(r)h(r)n ,

σ 2(r)v

)
.

The SV-DPMmodel time t one-step-ahead predictive likelihood
equals Eq. (14) evaluated at the observed return yt with {θ (r),
h(r)t , α(r)} representing the draws from a full MCMC run on the
posterior θ, ht , α|y1, . . . , yt−1.

4.2. Conditional moments

Using Eq. (12), in-sample moments of the equity return can be
computed. For instance, the first and second moments of the SV-
DPMmodel’s return distribution can be approximated as

E[Yt |y] ≈
1
R

R∑
r=1

 α(r)

α(r) + n
m+

k(r)∑
r=1

n(r)i
α(r) + n

η
(r)
i

 ,
E[Y 2t |y] ≈

1
R

R∑
r=1

 α(r)

α(r) + n


(
1+ τ exp{h(r)t }

)
s0

τ(v0 − 2)
+m2


+

k(r)∑
i=1

n(r)i
α(r) + n

[
η
2(r)
i + λ

−2(r)
i exp{h(r)t }

] ,
and the posterior conditional variance equals Var(Yt |y) ≡ E[Y 2t |y]
− E[Yt |y]2.

4.3. Label switching

Mixture models in general suffer from what is referred to as
‘‘label switching’’; a shortcoming where the mixture parameters
are unidentified. In Eq. (13), the conditional density is symmetrical
over the k clusters, in other words, it will equal the same value re-
gardless of the particular permutation of the mixture parameters,
{ng(j), ηg(j), λg(j)}j=1,...,k, where g(j) is the permutation function of
k elements. As a result the mixture parameters of the jth cluster in
one sweep of the sampler may be assigned a different cluster label,
g(j) 6= j, during another sweep of the sampler (see Richardson and
Green, 1997). The DPM clusters, therefore, cannot be used to iden-
tify time periods where markets are in a particular state such as an
expansionary or recessionary economic state. Since our only pur-
pose for using the DPM is to model the distribution of y∗t nonpara-
metrically, label switching will not present a problem in making
inferences concerning the parameters or forecasts of the stochastic
volatility model. For a more detailed discussion of this in the con-
text of finite mixture models see Geweke (2007) and Frühwirth-
Schnatter (2006).

5. An empirical example

In this section we report the results from applying the SV-DPM
model to daily stock return data. More specifically, we apply the
SV-DPM and SV-DPM-P models and the MCMC sampler developed
in Section 3 to 6815 compounded daily returns from the Center for
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Table 1
Posterior estimates for daily returns of the CRSP value-weighted portfolio from Jan. 2, 1980 to Dec. 29, 2006 (6815 observations, 30,000 thinned draws of the SV-DPM and
SV-DPM-P sampling algorithm where every tenth draw is retained and the first 1000 thinned draws are discarded).

SV-DPM SV-DPM-P SV-t SV-N
Mean Stdev Ineff Mean Stdev Mean Stdev Mean Stdev

µ 0.0747 0.0115 0.0786 0.0084 0.0793 0.0086
γ −0.0087 0.0023 −0.0106 0.0028
δ 0.9900 0.0022 13.510 0.9852 0.0033 0.9878 0.0026 0.9795 0.0037
σ 2v 0.0149 0.0023 33.195 0.0205 0.0033 0.0154 0.0023 0.0276 0.0040
ν 9.9149 1.3035
α 0.3323 0.1873 20.571 1.4034 0.5396
k 4.6006 1.9579 49.939 21.589 6.9073

Ineff is the inefficiency factor.
SV-DPM: yt |ηt , λt , ht ∼ N(ηt , λ−2t exp(ht )), (ηt , λ

2
t )
′
|G ∼ DP(G0, α), G0(ηt , λ2t ) ≡ N

(
0, (10λ2t )

−1)
− Γ (10/2, 10/2), α ∼ Γ (2, 8)

SV-DPM-P: yt |λt , ht ∼ N(µ, λ−2t exp(ht )), λt |G ∼ DP(G0, α),G0(λ
2
t ) ≡ Γ (10/2, 10/2), α ∼ Γ (2, 8)

SV-t: yt = µ+ exp(ht/2)zt , ht = γ + δht−1 + σvvt , zt ∼ tν(0, 1), vt ∼ N(0, 1)
SV-N: yt = µ+ exp(ht/2)zt , ht = γ + δht−1 + σvvt , zt ∼ N(0, 1), vt ∼ N(0, 1).
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Fig. 1. CRSP value-weightedportfolio index returns from Jan. 2, 1980–Dec. 29, 2006
(n = 6815).

Research in Security Prices (CRSP) value-weighted portfolio index
over the trading days January 2, 1980 to December 29, 2006. Fig. 1
plots the percentage returns (the return series multiplied by 100).
The CRSP portfolio returns average 0.0529 during this time period
with a variance of 0.9225. Non-Gaussian behavior is seen in the
return’s significantly negative skewness of −0.9837 and highly
elevated kurtosis measure of 22.9538.
In addition to modeling the CRSP returns with the SV-DPM, we

also apply a stochastic volatility model with normal innovations
(SV-N):

yt = µ+ exp(ht/2)zt , zt ∼ N(0, 1),
ht = γ + δht−1 + σvvt , vt ∼ N(0, 1).

Priors are µ ∼ N(0, 0.1), γ ∼ N(0, 100), δ ∼ N(0, 100)I|δ|<1,
and σ 2v ∼ Inv-Γ (10/2, 0.5/2) and are similar to those of Jacquier
et al. (1994). We also estimate a stochastic volatility model with
Student-t return innovations (SV-t):

yt = µ+ exp(ht/2)zt , zt ∼ St(0, (ν − 2)/ν, ν),
ht = γ + δht−1 + σvvt , vt ∼ N(0, 1),

where St(0, (ν − 2)/ν, ν) is a Student-t density standardized to
have variance 1, and ν degrees of freedom. The priors are the same
as in the SV-N model with ν ∼ U(2, 100).
The priors for the SV-DPM and SV-DPM-P models are chosen to

match the parametric SV models with δ ∼ N(0, 100)I|δ|<1, σ 2v ∼
Inv-Γ (10/2, 0.5/2). The specific DPM prior is the base distribu-
tion, G0 ∼ N(0, (10λ2t )

−1) − Γ (10/2, 10/2), and the precision
parameter prior α ∼ Γ (2, 8). This base distribution provides a
wide range of empirically realistic values for the mean and pre-
cision. Section 5.1 considers other priors.
Estimation of the SV-N and SV-t models is carried out with the

hybrid Gibbs,Metropolis–Hastings sampler of Jacquier et al. (2004)
except that we use the random block sampler of Section 3.2 for h.
Sampling of the degree of freedom parameter for the SV-t uses a
tailored proposal density based on a quadratic approximation of
the conditional posterior density at its mode.
To eliminate any dependencies on the initial volatilities, 1000
sweeps of the step-by-step volatility sampler of Kim et al. (1998)
are carried out for each model while holding the initial parameter
values constant. 30,000 sweeps of the sampler for the SV-N and
SV-t models are then conducted of which we keep the last 10,000
draws for inference of the two models.
We increase the efficiency of the SV-DPM sampler and reduce

the total computing time by respectively taking every tenth draw
of the SV-DPM model’s sampler. To reduce the sampler depen-
dency on the starting parameters and volatilities, the first 1000
thinned draws of each chain are discarded, leaving a total of 30,000
thinned draws for inference.
Table 1 reports the MCMC sample means and standard devia-

tions for the parameters of the SV-DPM, SV-DPM-P, SV-t, and SV-N
models. We report the observed serial correlation in the draws of
the SV-DPMmodel parameters with the inefficiency measure:

1+ 2
L∑

τ=1

L− τ
L

ρ(τ),

where ρ(·) is the sample autocorrelation function of the parame-
ter draws, L = 1000 is the largest lag at which the autocorrela-
tion function is computed. The inefficiency measure quantifies the
loss associated with using correlated draws from the sampler, as
opposed to truly independent draws, in computing the posterior
mean. The numerical standard error equals the square root of the
product of the inefficiencymeasure and the sample variance of the
draws (Geweke, 1992).
The posterior estimate of the variance of volatility parameter,

σ 2v , is the smallest with the SV-DPMmodel. The posterior estimate
of σ 2v is 0.0149 with a standard deviation of 0.0023. This mean and
standard deviation for σ 2v is substantially smaller than the SV-N
modelsmean of 0.0276 and standard deviation of 0.004. For the SV-
Nmodel this is to be expected, given that the SV-Nmodel requires
a larger value of σ 2v in order to capture the excess kurtosis found in
the return data.
Excess kurtosis is still, however, unaccounted for by the SV-

N return process (Bakshi et al., 1997; Chib et al., 2002). A better
characterization of the kurtosis is found in the SV-DPM, SV-DPM-P,
and SV-t models where the distribution of the return process is fit
by a fat-tailed mixture of normals. Mixture models assign volatile
time periods to draws from the tail of the return distribution rather
than to a more volatile volatility process. As a result the σ 2v in the
SV-t and SV-DPM-P models are smaller in value than in the SV-
N model, and closer to the SV-DPM ones, with the SV-t posterior
mean and standard deviation of σ 2v equaling 0.0154 and 0.0023,
respectively. For the SV-DPM-P model σ 2v is somewhat larger with
a posterior mean of 0.0205 but still smaller than for the SV-N
model. In Fig. 2 the posterior densities of σ 2v are consistent with
these observations. Notice that the upper tail, for both the SV-DPM
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Fig. 2. Posterior density of σ 2v for the SV-DPM, SV-DPM-P, SV-t and SV-N models
applied to the value-weighted CRSP portfolio daily return data.

and SV-tmodels’ density, for σ 2v barely overlaps with the lower tail
of the SV-N model’s density.
Dynamic behavior in volatility as captured by the AR parameter

δ is nearly indistinguishable between the four SV models. First-
order dynamics in the volatility of the SV-DPM model is precisely
estimated at 0.9900 with the tight posterior standard deviation of
0.0022. This estimate of δ is only slightly larger than the SV-DPM-P
and SV-t estimates of 0.9852 and 0.9878 respectively. The volatility
in the SV-Nmodel reverts to itsmean at a slightly slower pacewith
a posterior estimate of δ equal to 0.9795.
For the daily portfolio return the average SV-DPMmixture order

is k = 4.6006 and this suggests that the SV-DPM not only captures
the daily stock return leptokurtotic behavior, but its skewness
too. The less flexible SV-DPM-P model requires significantly more
clusters (k = 21.589) to fit the data. Because of the SV-N model’s
symmetrical Gaussian innovations, it is unable to account for this
asymmetrical behavior. Instead, it compensates for this skewness
behavior by increasing its level of volatility during those periods
where volatility is highest.
This increase in the volatility of the SV-N model relative to the

SV-DPM and SV-t models is apparent in Fig. 3 where the SV-DPM
posterior conditional variance of returns is plotted in Panel (a) and
the SV-DPM model’s differences from the conditional variances of
the SV-N model are graphed in Panel (b) and those from the SV-
t model in Panel (c). There are differences in each of the models,
with the largest disagreement being for the 1987 crash and the
days following it. The crash period is captured as a spike in (a). Both
fully parametric models have a larger variance during the crash
than that of the SV-DPMmodel. For the SV-N the variance is more
than 10 points larger while for the SV-t it is closer to 1 point larger
than the SV-DPM.
As for the behavior of skewness, because of their symmetrical

distributions, the SV-DPM-P, SV-N and SV-t models are all unable
to capture the skewness of daily returns. This is borne out in the
one-day-ahead, out-of-sample, predictive density plots of Fig. 4
and the log density in Fig. 5. The SV-DPM predictive density is
clearly different from the SV-N or SV-t models. For example, the
SV-DPM predictive density is more centered around 0 and exhibits
the asymmetry associated with the negative skewness of returns.
The log predictive density plots show the SV-DPM producing fatter
tails than the other models. The tails of SV-DPM-P are fatter than
the SV-N ones but thinner than the SV-t ones. Like for these
parametric models, the SV-DPM-P tails are essentially symmetric.

5.1. Robustness to DP hyperparameters

Using the same empirical data set of CRSP portfolio returns we
estimate the SV-DPM model under five different prior specifica-
tions of π(α) ≡ Γ (a, b) and G0 ≡ N(m, (τλ2t )

−1)−Γ (v0/2, s0/2)
to test the robustness of the posterior estimates of the SV-DPM
model to different priors. Table 2 reports these robustness findings
for the posterior estimates of the SV-DPM model for the different
priors.
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Fig. 5. Log predictive density, ln f (Yn+1|y), of the SV-DPM, SV-N, and SV-t models
for the value-weighted CRSP portfolio daily return.

Table 2
Robust sensitivity analysis of the SV-DPM to different precision parameter and base
distribution priors for daily returns of the value-weighted CRSP portfolio from Jan.
2, 1980 to Dec. 29, 2006 (6815 observations, 30,000 thinned draws of the SV-DPM
sampling algorithm where every tenth draw is retained and the first 1000 thinned
draws are discarded).

Prior 2 Prior 3 Prior 4 Prior 5 Prior 6

δ 0.9897 0.9901 0.9902 0.9902 0.9900
(0.0022) (0.0022) (0.0022) (0.0022) (0.0022)

σ 2v 0.0154 0.0147 0.0147 0.0145 0.0149
(0.0023) (0.0023) (0.0022) (0.0022) (0.0023)

α 0.0604 0.3371 0.3330 0.3313 0.3451
(0.0553) (0.1853) (0.1846) (0.1798) (0.1945)

k 2.6603 4.7302 4.6341 4.5886 4.8409
(0.8952) (1.9750) (1.9555) (1.7908) (2.1363)

The posterior mean and standard deviation (in parenthesis) are reported.
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To determine the impact that the prior of the precision param-
eter has on the estimates of the SV-DPM model we evaluate the
model under the prior specification
• Prior 2: π(α) ∼ Γ (0.1, 20),
where E[α] = 0.005 and Var[α] = 0.00025, and leave the other
priors exactly as before. These hyperparameter values cause the
prior distribution for α to bemore tightly distributed and centered
closer to zero than the original prior. As a result the posterior
estimate of α is found to be closer to zero at 0.0604. Since a smaller
value for α lowers the probability of selecting a new cluster from
the Polya urn, under Prior 2 the estimate of k is smaller at 2.6603.
Though the mixture representation for the distribution of returns
now on average consists of fewer clusters, notice that the posterior
estimates of the volatility parameters, δ and σ 2v , and their standard
deviations are nearly the same as under the original prior.
In the other four priorswe allow the DP prior’s base distribution

N(m, (τλ2t )
−1) − Γ (v0/2, s0/2) to change in order to explore

how sensitive the posterior estimates of the SV-DPMmodel are to
prior’s mean and spread. The four priors are
• Prior 3: G0 ≡ N(0, (5 ∗ λ2)−1)− Γ (10/2, 10/2),
• Prior 4: G0 ≡ N(0, (15 ∗ λ2)−1)− Γ (10/2, 10/2),
• Prior 5: G0 ≡ N(0, (10 ∗ λ2)−1)− Γ (5/2, 5/2),
• Prior 6: G0 ≡ N(0, (10 ∗ λ2)−1)− Γ (15/2, 15/2),
where Prior 3 & 4 change the variance of the mixture mean, η, and
Prior 5 & 6 test for the robustness to changes in the prior of the
mixture variance, λ2. In the posterior results reported in Table 2,
the changes in the hyperparameters for η andλ2 base distributions
do not affect the posterior estimates of the SV-DPM model. Under
each of the four priors the estimates of δ are the same up to the
third decimal place at 0.990, and the estimates of σ 2v are equal
out to the second decimal place at 0.01. Differences between the
estimates of α are only found under Prior 2 while the remaining
estimates have a posterior mean of approximately 0.33. Similar
results are found for k for Prior 2 which produces the smallest
estimate of k = 2.6603, while k is 4.6–4.8 for the other priors.

5.2. Robustness to number of draws

Because the DPM sampler is a step-by-step algorithm, making
30,000 thinned draws from the SV-DPM models is costly. This
is understandable given the level of inefficiency associated with
the posterior draws of the SV-DPM model. It would, however,
be preferable if fewer draws could be used in making inferences
concerning the SV-DPM model. To determine whether this is
possible, the SV-DPM model for the CRSP portfolio return data is
re-estimated with a MCMC sample of 10,000 thinned draws. The
posterior results of the SV-DPM model from these 10,000 draws
are reported in Table 3. The table also includes the results from
Table 1 where 30,000 draws were made. Notice that there is little
difference between the posterior means of the parameters. The
volatility parameters, δ and σ 2v , have comparable posterior means
and exactly the same standard deviations. The DP parameters α
and k are also very similar.

5.3. Model comparison

The previous large sample analysis highlighted features of the
predictive density that the standard parametric SV models could
not account for. In this section we investigate the forecasting
value of the predictive densities of the SV-DPM specifications in a
small sample setting, using 755 daily CRSP returns over the period
January 3, 2006 toDecember 31, 2008. Given the existing results on
the good performance of the basic parametric SV models we focus
on the relative value that the new models contribute to density
forecasts. To do this we use themodel pooling approach of Geweke
and Amisano (2008). This approach recognizes that none of the
models may be the true data generating process and advocates a
Table 3
Robust sensitivity analysis of the SV-DPM to the number of MCMC draws for daily
returns of the value-weighted CRSP portfolio from Jan. 2, 1980 to Dec. 29, 2006
(6815 observations). T thinned MCMC draws where every tenth draw is retained
and the first 1000 thinned draws are discarded.

T 30,000 10,000
Mean Stdev Ineff Mean Stdev Ineff

δ 0.9900 0.0022 13.510 0.9901 0.0022 16.187
σ 2v 0.0149 0.0023 33.195 0.0149 0.0022 39.031
α 0.3323 0.1873 20.571 0.3365 0.1911 29.518
k 4.6006 1.9579 49.939 4.6602 1.9640 69.544

linear prediction pool based on the log score function (predictive
likelihood) from a set of models.
Given a set of predictive densities {f (yt |y1, . . . , yt−1,Mi)}Ki=1

from the set of models {Mi}Ki=1 consider the combined predictive
density of the form
K∑
i=1

wif (yt |y1, . . . , yt−1,Mi),

K∑
i=1

wi = 1, wi ≥ 0, i = 1, . . . , K .

Weights are chosen to maximize the log pooled, predictive score
function:

max
wi,i=1,...,K

τ2∑
t=τ1

log

[
K∑
i=1

wif (yt |y1, . . . , yt−1,Mi)

]
, (15)

where the predictive densities are evaluated at the realized data
point yt .
For each of the models we run a MCMC simulation consisting

of 11,000 draws of which the first 1000 draws are thrown away
to obtain 10,000 posterior draws conditional on the return data
up to time period t − 1; i.e., y1, . . . , yt−1. These draws are then
used to estimate the predictive likelihood f (yt |y1, . . . , yt−1,Mi).8
For the SV-DPMmodel the predictive likelihood is estimated using
Eq. (14). MCMC draws of this size are carried out for each SVmodel
and data set y1, . . . , yt−1 where t = τ1, . . . , τ2. Given a history of
predictive likelihood values for each model we can estimate the
weights in Eq. (15).
The pool of models considered comprises: SV-DPM; SV-DPM-P;

SV-t and SV-N; i.e., K = 4. Recall that in the SV-DPM-P model of
Section 2 only the return precision parameterλ2t is governed by the
DP prior and the intercept is assumed to be the unknown constant
µ. Conditional on return data back to January 3, 2006 (t = 1), we
compute the log pooled predictive score function over the period
of May 30, 2006 (τ1 = 105) to December 31, 2008 (τ2 = 755).9
Table 4 displays the optimal log score and the weights for

the linear pool of models. Using all four models the log score is
−886.38. The SV-DPM-P model dominates with a weight of 0.73
followed by the SV-t model with 0.27. Each of the subsequent
table entries drop one of the models from the pool to assess the
deleted model’s relative importance for forecasting as measured
by the model’s contribution to the log score. As long as the SV-
DPM-P model is in the pool, a similar log score is achieved, but
once this model is dropped the log score declines just under 3

8 Because of the large number of predictive likelihoods that are required in the
pooled predictive score function, the number of MCMC draws is smaller than the
sampling performed in Section 5. For the largest series (745 observations) the SV-
DPM sampler’s compiled C-code takes just over 6 min on a 3 GHz Intel Xeon quad-
core computer running Linux.
9 We decrease the computing time involved in calculating the pooled predictive
score function by distributing the calculation of, for each model, 650 predictive
likelihoods, f (yt |y1, . . . , yt−1), t = 105, . . . , 755, to 25–30 separate processors
each using the same initial values.
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Table 4
The optimal pooled log predictive score function maxw f (w) and optimal weight
vector w∗ = argmax f where f (w) ≡

∑
t log[

∑
i wif (yt |y1, . . . , yt−1,Mi)], with t

summing over theweighted combination of eachmodel’s one-day-ahead predictive
likelihoods fromMay 30, 2006 (t = 105) to Dec. 31, 2008 (t = 755), conditional on
return data back to Jan. 3, 2006 (t = 1). The x denotes a SV model being dropped
from the predictive pool of models.

Log score w∗DPM w∗DPM-P w∗rmSV -t w∗SV-N

−886.38 0 0.7280 0.2720 0
−886.38 0 0.7280 0.2720 x
−887.43 0 0.9469 x 0.0531
−889.14 0.3915 x 0.3881 0.2205
−886.38 x 0.7280 0.2720 0

points to−889.14. The SV-DPM-P nests both the SV-N and the SV-
t model. The SV-t models a distinct precision parameter value for
each observation, whereas the SV-DPM-P models prior leads to a
clustering of distinct precision parameter values that are fewer in
number than the sample size.10 The zero or near zero weight and
lack of contribution to the pooled predictive likelihood function
from the SV-DPM and SV-N models is likely due to the fact that
to learn about asymmetry in the return distribution requires more
observations than our data series of 755 returns affords.

6. Conclusion

This paper proposed a new Bayesian, semiparametric, autore-
gressive, stochastic volatility model where the conditional return
distribution ismodeled nonparametricallywith an infinite ordered
mixture of normal distributions. The unknown number of mixture
clusters, their probability of occurrence, and their mean and vari-
ance are flexibly modeled a priori with a Dirichlet process prior.
Conditional on a draw of the log volatilities, an efficient MCMC
algorithm has been constructed to produce posterior draws of
the unknown number of mixture clusters and the clusters’ mean
and variance. The sampler has been stress tested against existing
parametric stochastic volatility models on real world daily return
data. The semiparametric stochastic volatility model performed
well on empirical return data, fitting both the negative skew-
ness and leptokurtotic properties of returns, while still capturing
the time-varying conditional heteroskedastic dynamics of returns.
The semiparametricmodel’s increased flexibility and robustness to
non-Gaussian behavior and its superior forecasts makes it an ap-
pealing specification for risk and portfolio managers. The SV-DPM
models canprovide improvements in both large and small samples.
Important questions remain to be answered with the Bayesian

semiparametric, stochastic volatility model. For instance, is it
possible to attach structural meaning to the mixture parameters,
such as a particular mixture cluster being identified with jumps
in returns or to time periods where the economy is in a particular
state of the business cycle? Placing such structural meaning on the
mixture clusters is possible by assigning a prior rank ordering to
the clusters within the Dirichlet process prior. Doing so overcomes
the label switching problem discussed earlier.
Another area of potential research is that of leverage effects.

Leverage effects have been used effectively with symmetrically
distributed stochastic volatility models to produce negative skew-
ness in returns. A natural question that one could ask is whether it
is possible to introduce leverage effects into this paper’s semipara-
metric, stochastic volatility model. If so, how do leverage effects
affect the skewness of the mixture distribution? These and other
interesting questions remain for future research.
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