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We provide an approach to forecasting the long-run (unconditional) distribution of equity returns making

optimal use of historical data in the presence of structural breaks. Our focus is on learning about breaks in

real time and assessing their impact on out-of-sample density forecasts. Forecasts use a probability-

weighted average of submodels, each of which is estimated over a different history of data. The empirical

results strongly reject ignoring structural change or using a fixed-length moving window. The shape of the

long-run distribution is affected by breaks, which has implications for risk management and long-run

investment decisions.
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1. INTRODUCTION

Forecasts of the long-run distribution of excess returns are an
important input into many financial decisions. For example,
Barberis (2000) and Jacquier, Kane, and Marcus (2005) discuss
the importance of accurate estimates for long-horizon portfolio
choice. Our paper models and forecasts the long-run (uncon-
ditional) distribution of excess returns using a flexible para-
metric density in the presence of potential structural breaks.
Our focus is on learning about breaks in real time and assessing
their impact on out-of-sample density forecasts. We illustrate
the importance of uncertainty about structural breaks and the
value of modeling higher-order moments of excess returns when
forecasting the return distribution and its moments. The shape of
the long-run distribution and the dynamics of the higher-order
moments are quite different from those generated by forecasts
which cannot capture structural breaks. The empirical results
strongly reject ignoring structural change in favor of our fore-
casts, which weight historical data to accommodate uncertainty
about structural breaks. We also strongly reject the common
practice of using a fixed-length moving window. These differ-
ences in long-run forecasts have implications for many financial
decisions, particularly for risk management and long-run
investment decisions such as those by a pension fund manager.

Existing work on structural breaks with respect to market
excess returns has focused on conditional return dynamics and
the equity premium. Applications to the equity premium
include Pastor and Stambaugh (2001) and Kim, Morley, and
Nelson (2005) who provide smoothed estimates of the equity
premium in the presence of structural breaks using a dynamic
risk-return model. In this environment, model estimates are
derived conditional on a maintained number of breaks in-
sample. These papers focus on the posterior distribution of
model parameters for estimating the equity premium.

Lettau and van Nieuwerburgh (2008) analyze the implica-
tions of structural breaks in the mean of the dividend price ratio

for conditional return predictability; Viceira (1997) investigates
shifts in the slope parameter associated with the log dividend
yield. Paye and Timmermann (2006) and Rapach and Wohar
(2006) present evidence of instability in models of predictable
returns based on structural breaks in regression coefficients asso-
ciated with several financial variables, including the lagged divi-
dend yield, short interest rate, term spread, and default premium.

Additional work on structural breaks in finance includes
Pesaran and Timmermann (2002) which investigates window es-
timation in the presence of breaks, Pettenuzzo and Timmermann
(2005) which analyzes the effects of model instability on optimal
asset allocation, Lettau, Ludvigson, and Wachter (2008) which
focuses on a regime change in macroeconomic risk, Andreou and
Ghysels (2002) which analyzes breaks in volatility dynamics,
and Pesaran, Pettenuzzo, and Timmermann (2007) which
explores the effects of structural instability on pricing.

To our knowledge, none of the existing applications study
the effects of structural change on forecasts of the uncondi-
tional distribution of returns. An advantage to working with the
long-run distribution is that it may be less susceptible to model
misspecification than short-run conditional models. For ex-
ample, an unconditional distribution of excess returns can be
consistent with different underlying models of risk, allowing us
to minimize model misspecification while focusing on the
implications of structural change.

We postulate that the long-run or unconditional distribution
of returns is generated by a discrete mixture of normals subject
to occasional breaks that are governed by an i.i.d. Bernoulli
distribution. This implies that the long-run distribution is time-
varying and could be nonstationary. We assume that structural
breaks partition the data into a sequence of stationary regimes
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each of which can be captured by a submodel, which is indexed
by its data history and associated parameter vector. New sub-
models are introduced periodically through time to allow for
multiple structural breaks, and for potential breaks out of
sample. The structural break model is constructed from a series
of submodels. Our Bayesian approach is based on Maheu and
Gordon (2008) extended to deal with multiple breaks out of
sample. Short horizon forecasts are dominated by current pos-
terior estimates from the data, since the probability of a break is
low. However, long-horizon forecasts converge to predictions
from a submodel using the prior. In other words, in the long run
we expect a break to occur and we only have our present prior
beliefs on what those new parameters will be.

Our maintained submodel of excess returns is a discrete
mixture of normals, which can capture heteroskedasticity,
asymmetry, and fat tails. This is the parameterization of excess
returns, which is subject to structural breaks. For robustness, we
compare our results using this flexible submodel specification
to a Gaussian submodel specification to see if the more general
distribution affects our inference about structural change or our
real time forecasts. Flexible modeling of the submodel density
is critical to avoid falsely identifying an outlier as a break.

Since structural breaks can never be identified with certainty,
submodel averaging provides a predictive distribution, which
accounts for past and future structural breaks, by integrating
over each of the possible submodels weighted by their proba-
bilities. Individual submodels only receive significant weight if
their predictive performance warrants it. We learn in real time
about past structural breaks and their effect on the distribution
of excess returns. The model average combines the past (poten-
tially biased) data from before the estimated break point, which
will tend to have less uncertainty about the distribution due to
sample length, with the less precise (but unbiased) estimates
based on the more recent postbreak data. Pesaran and Tim-
mermann (2007) and Pastor and Stambaugh (2001) also discuss
the use of both pre and postbreak data. Our approach provides a
method to combine submodels estimated over different his-
tories of data. Since the predictive density of returns integrates
over the submodel distribution, submodel uncertainty (uncer-
tainty about structural breaks) is accounted for in the analysis.

Our empirical results strongly reject ignoring structural
change in favor of forecasts that weight historical data to
accommodate uncertainty about structural breaks. We also
strongly reject the common practice of using a fixed-length
moving window. Ignoring structural breaks leads to inferior
density forecasts. So does using a fixed-length moving window.

Structural change has implications for the entire shape of the
long-run excess return distribution. Our evidence clearly sup-
ports using a mixture-of-normals submodel with two compo-
nents over a single-component (Gaussian) submodel. The
preferred structural change model produces kurtosis values well
above 3 and negative skewness throughout the sample. Fur-
thermore, the shape of the long-run distribution and the
dynamics of the higher-order moments are quite different from
those generated by forecasts which cannot capture structural
breaks. Ignoring structural change results in misspecification of
the long-run distribution of excess returns, which can have
serious implications, not only for the location of the distribution
(the expected long-run premium), but also for risk assessments.

One by-product of our results is real-time inference about
probable dates of structural breaks associated with the dis-
tribution of market equity excess returns. This is revealed by
our submodel probability distribution at each point in time.
However, since our model average combines forecasts from the
individual submodels, our objective is not to identify specific
dates of structural breaks but rather to integrate out break
points to produce superior forecasts.

The structural change model produces good density and
point forecasts and illustrates the importance of modeling
higher-order moments of excess returns. We investigate short
(1 month) to long horizon (20 years) forecasts of cumulative
excess returns. The structural break model, which accounts for
multiple structural breaks, produces superior out-of-sample
forecasts of the mean and the variance. These differences will be
important for long-run investment and risk management decisions.

The article is organized as follows. The next section de-
scribes the data sources. Section 3 introduces a flexible discrete
mixture-of-normals model for excess returns as our submodel
parameterization. Section 4 reviews Bayesian estimation
techniques for the mixture submodel of excess returns. The
proposed method for estimation and forecasting in the presence
of structural breaks is outlined in Section 5. Results are
reported in Section 6; and conclusions are found in Section 7.

2. DATA

The equity data are monthly returns, including dividend
distributions, on a well diversified market portfolio. The
monthly equity returns for 1885:2–1925:12 were obtained from
Bill Schwert; details of the data construction can be found in
Schwert (1990). Monthly equity returns from 1926:1–2003:12
are from the Center for Research in Security Prices (CRSP)
value-weighted portfolio, which includes securities on the New
York stock exchange, American stock exchange, and the
NASDAQ. The returns were converted to continuously com-
pounded monthly returns by taking the natural logarithm of the
gross monthly return.

Data on the risk-free rate from 1885:2–1925:12 were
obtained from annual interest rates supplied by Jeremy Siegel.
Siegel (1992) describes the construction of the data in detail
Those annual interest rates were converted to monthly contin-
uously compounded rates. Interest rates from 1926:1–2003:12
are from the United States three-month T-bill rates supplied by
the Fama-Bliss risk-free rate file provided by CRSP.

Finally, the monthly excess return, rt, is defined as the
monthly continuously compounded portfolio return minus the
monthly risk-free rate. This monthly excess return is scaled by
multiplying by 12. Descriptive statistics for the 1,423 scaled
monthly excess returns are 0.0523 (mean), 0.4007 (variance),
�0.4513 (skewness), and 9.9871 (kurtosis).

3. MIXTURE-OF-NORMALS SUBMODEL FOR
EXCESS RETURNS

In this section we outline our maintained model of excess
returns, which is subject to structural breaks. We label this the
submodel, and provide more details on this definition in the next
section. Financial returns are well known to display skewness
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and kurtosis and our inferences about forecasts and structural
breaks may be sensitive to these characteristics of the shape of
the distribution. Our maintained submodel of excess returns is a
discrete mixture of normals. Discrete mixtures are a very flexible
method to capture various degrees of asymmetry and tail thick-
ness. Indeed a sufficient number of components can approx-
imate arbitrary distributions (Roeder and Wasserman 1997).

The k-component mixture submodel of excess returns is
represented as

rt ¼

Nðm1;s
2
1Þ with probability p1

..

. ..
.

Nðmk;s
2
kÞ with probability pk;

8>><
>>: ð3:1Þ

with
Pk

j¼1 pj ¼ 1. It will be convenient to denote each mean
and variance as mj, and s2

j ; with j 2 {1, 2, . . . , k}. Data from
this specification are generated as: first a component j is chosen
according to the probabilities p1, . . . , pk; then a return is
generated from Nðmj;s

2
j Þ: Note that returns will display het-

eroskedasticity. Often a two-component specification is suffi-
cient to capture the features of returns. Relative to the normal
distribution, distributions with just two components can exhibit
fat-tails, skewness, and combinations of skewness and fat-tails.
We do not use this mixture specification to capture structural
breaks, but rather as a flexible method of capturing features of
the unconditional distribution of excess returns, which is our
submodel that is subject to structural breaks.

Since our focus is on the moments of excess returns, it will
be useful to consider the implied moments of excess returns as
a function of the submodel parameters. The relationships
between the uncentered moments and the submodel parameters
for a k-component submodel are:

g ¼ Ert ¼
Xk

i¼1

mipi; ð3:2Þ

in which g is defined as the equity premium; and

g92 ¼ Er2
t ¼

Xk

i¼1

ðm2
i þ s2

i Þpi ð3:3Þ

g93 ¼ Er3
t ¼

Xk

i¼1

ðm3
i þ 3mis

2
i Þpi ð3:4Þ

g94 ¼ Er4
t ¼

Xk

i¼1

ðm4
i þ 6m2

i s2
i þ 3s4

i Þpi ð3:5Þ

for the higher-order moments of returns. The higher-order
centered moments gj ¼ E[(rt � E(rt))

j], j ¼ 2, 3, 4, are then

g2 ¼ g92 � ðgÞ2 ð3:6Þ
g3 ¼ g93 � 3gg92 þ 2ðgÞ3 ð3:7Þ
g4 ¼ g94 � 4gg93 þ 6ðgÞ2g92 � 3ðgÞ4: ð3:8Þ

As a special case, a one-component submodel allows for
normally distributed returns. Only two components are needed
to produce skewness and excess kurtosis. If m1 ¼ � � � ¼ mk ¼ 0
and at least one variance parameter differs from the others the
resulting density will have excess kurtosis but not asymmetry.
To produce asymmetry and hence skewness we need mi 6¼ mj

for some i 6¼ j. Section 4 discusses a Bayesian approach to
estimation of this submodel.

4. ESTIMATION OF THE SUBMODELS

In the next two subsections we discuss Bayesian estimation
methods for the discrete mixture-of-normals submodels. This is
the parameterization that is subject to structural breaks, as
modeled in 5 below. An important special case for the sub-
model specification is when there is a single component, k¼ 1,
which we discuss first.

4.1 Gaussian Case, k ¼ 1

When there is only one component our submodel for excess
returns reduces to a normal distribution with mean m, variance
s2, and likelihood function,

pðrjm;s2Þ ¼
YT
t¼1

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2
p exp � 1

2s2
ðrt � mÞ2

� �
; ð4:1Þ

where r ¼ [r1, . . . , rT]9. In the last section, this model is
included as a special case when p1 ¼ 1.

Bayesian methods require specification of a prior dis-
tribution over the parameters m and s2. Given the independent
priors m ; N (b, B) Im>0, and s2 ; IG (y/2, s/2), where IG (�, �)
denotes the inverse gamma distribution, Bayes rule gives the
posterior distribution of m and s2 as

pðm;s2j rÞ } pðr jm;s2ÞpðmÞpðs2Þ; ð4:2Þ

where p(m) and p(s2) denote the probability density functions
of the priors. Note that the indicator function Im>0 is 1 when m >
0 is true and otherwise 0. This restriction enforces a positive
equity premium as indicated by theory.

Although closed form solutions for the posterior distribution
are not available, we can use Gibbs sampling to simulate from
the posterior and estimate quantities of interest. The Gibbs
sampler iterates sampling from the following conditional dis-
tributions, which forms a Markov chain

1. sample m ; p(m|s2, r)
2. sample s2 ; p(s2|m, r).

In the above, we reject any draw that does not satisfy m > 0.
These steps are repeated many times and an initial set of the
draws are discarded to minimize startup conditions and ensure
the remaining sequence of the draws is from the converged
chain. See Chib (2001), Geweke (1997), and Robert and
Casella (1999) for background information on Markov chain
Monte Carlo methods of which Gibbs sampling is a special
case; and see Johannes and Polson (2005) for a survey of
financial applications. After obtaining a set of N draws
fmðiÞ; ðs2ÞðiÞgN

i¼1 from the posterior, we can estimate moments
using sample averages. For example, the posterior mean of m,
which is an estimate of the equity premium conditional on this
submodel and data, can be estimated as

E½mjr� � 1

N

XN

i¼1

mðiÞ: ð4:3Þ

To measure the dispersion of the posterior distribution of the
equity premium we could compute the posterior standard
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deviation of m in an analogous fashion, using sample averages

obtained from the Gibbs sampler in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½m2jr� � E½mjr�2

q
.

Alternatively, we could summarize the marginal distribution
of the equity premium with a histogram or kernel density
estimate.

This simple submodel, which assumes excess returns follow
a Gaussian distribution, cannot account for the asymmetry and
fat tails found in return data. Modeling these features of returns
may be important to our inference about structural change and
consequent forecasts. The next section provides details on
estimation for submodels with two or more components which
can capture the higher-order moments of excess returns.

4.2 Mixture Case, k > 1

In the case of k > 1 mixture of normals, the likelihood of
excess returns is

pðrjm;s2;pÞ ¼
YT
t¼1

Xk

j¼1

pj
1ffiffiffiffiffiffiffiffiffiffiffi

2ps2
j

q exp � 1

2s2
j

ðrt � mjÞ
2

 !
;

ð4:4Þ

where m ¼ [m1, . . . , mk]9, s2 ¼ ½s2
1; . . . ;s2

k �
0, and p ¼ [p1,

. . . , pk]. Bayesian estimation of mixtures has been extensively
discussed in the literature and our approach closely follows
Diebolt and Robert (1994). We choose conditionally conjugate
prior distributions which facilitate our Gibbs sampling ap-
proach. The independent priors are mi ; N (bi, Bii),
s2

i ; IGðyi=2; si=2Þ, and p ; D (a1, . . . , ak), where the latter
is the Dirichlet distribution. We continue to impose a positive
equity premium by giving zero support to any parameter con-
figuration that violates g > 0.

Discrete mixture models can be viewed as a simpler model if
an indicator variable zt records which observations come from
component j. Our approach to Bayesian estimation of this
submodel begins with the specification of a prior distribution
and the augmentation of the parameter vector by the additional
indicator zt ¼ [0 . . . 1 . . . 0] which is a row vector of zeros
with a single 1 in the position j if rt is drawn from component j.
Let Z be the matrix that stacks the rows zt, t ¼ 1, . . . , T.

With the full data rt, zt the data density becomes

pðrjm;s2;p;ZÞ¼
YT

t¼1

Xk

j¼1

zt;j
1ffiffiffiffiffiffiffiffiffiffiffi

2ps2
j

q exp � 1

2s2
j

ðrt � mjÞ
2

 !
:

ð4:5Þ

Bayes’ theorem now gives the posterior distributions as

pðm;s2;p;ZjrÞ } pðrjm;s2;p;ZÞpðm;s2;p;ZÞ ð4:6Þ
} pðrjm;s2;p;ZÞpðZjm;s2;pÞpðm;s2;pÞ:

ð4:7Þ

The posterior distribution has an unknown form, however, we
can generate a sequence of draws from this density using Gibbs
sampling. Just as in the k ¼ 1 case, we sample from a set of
conditional distributions and collect a large number of draws.
From this set of draws we can obtain simulation-consistent
estimates of posterior moments. The Gibbs sampling routine

repeats the following steps for posterior simulation: (1)
sample mi ; p(mi|s

2, p, Z, r), i ¼ 1, . . . , k; (2) sample
s2

i ; pðs2
i jm;p;Z; rÞ; i ¼ 1; . . .; k; (3) sample p ; p(p|m,

s2, Z, r); and (4) sample zt ; p(zt|m, s2, p, r), t ¼ 1, . . . , T.
Steps one to four are repeated many times and an initial set of
the draws are discarded to minimize startup conditions and
ensure the remaining sequence of the draws is from the con-
verged chain. Our appendix provides details concerning com-
putations involved for each of the Gibbs sampling steps.

5. MODELING STRUCTURAL BREAKS

In this section we outline a method to deal with potential
structural breaks. Our approach is based on Maheu and Gordon
(2008). We extend it to deal with multiple breaks out of sample.
Recent work on forecasting in the presence of model instability
includes Clark and McCracken (2006) and Pesaran and Tim-
mermann (2007). For a survey of change-point detection from a
classical perspective see Perron (2006).

Recent Bayesian approaches to modeling structural breaks
include Koop and Potter (2007), Giordani and Kohn (2007) and
Pesaran, Pettenuzzo, and Timmermann (2006). An advantage
of our approach is that we can use existing standard Gibbs
sampling techniques and Bayesian model averaging ideas
(Avramov 2002; Cremers 2002; Wright 2003; Koop 2003;
Eklund and Karlsson 2007). As such, Gibbs sampling for dis-
crete mixture models can be used directly without any mod-
ification. As we discuss in Section 5.3, submodel parameter
estimation is separated from estimation of the process gov-
erning breaks. Estimation of the break process has submodel
parameter uncertainty integrated out, making it a low-dimensional
tractable problem. Finally, our approach delivers a marginal
likelihood estimate that integrates over all structural breaks and
allows for direct model comparison with Bayes factors. Rela-
tive to Pesaran, Petenuzzo, and Timmermann (2006), we do not
impose an upper bound on the number of structural breaks. Our
approach scales well with increasing data and an increasing
number of possible breaks. For example, in the empirical
application we consider over 100 potential break points.

5.1 Submodel Structure

Intuitively, if a structural break occurred in the past we
would want to adjust our use of the old data in our estimation
procedure since those data can bias our estimates and forecasts.
We assume that structural breaks are exogenous unpredictable
events that result in a change in the parameter vector associated
with the maintained submodel, in this case a discrete mixture-
of-normals submodel of excess returns. In this approach we
view each structural break as a unique one-time event.

The structural break model is constructed from a series of
identical parameterizations (mixture of normals, number of
components k fixed) that we label submodels. What differ-
entiates the submodels is the history of data that is used to form
the posterior density of the parameter vector u. (Recall that
for the k ¼ 2 submodel specification, u ¼ fm1;m2;s

2
1;s

2
2;

p1;p2g:) As a result, u will have a different posterior density
for each submodel, and a different predictive density for excess
returns. Each of the individual submodels assume that once a
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break occurs, past data are not useful in learning about the new
parameter value, only future data can be used to update beliefs.
As more data arrives, the posterior density associated with the
parameters of each submodel are updated. Our real-time
approach incorporates the probability of out-of-sample breaks.
Therefore, new submodels are continually introduced through
time. Structural breaks are identified by the probability dis-
tribution on submodels.

Submodels are differentiated by when they start and the
number of data points they use. Since structural breaks can never
be identified with certainty, submodel averaging provides
a predictive distribution, which accounts for past and future
structural breaks, by integrating over each of the possible sub-
models weighted by their probabilities. New submodels only
receive significant weights once their predictive performance
warrants it. The model average optimally combines the past
(potentially biased) data from before the estimated break point,
which will tend to have less parameter uncertainty due to sample
length, with the less precise (but unbiased) estimates based on
the more recent postbreak data. This approach provides a method
to combine submodels estimated over different histories of data.

To begin, define the information set Ia,b ¼ {ra, . . . , rb}, a #

b, with Ia;b ¼ f;g; for a > b, and for convenience let It [ I1,t.
Let Mi be a submodel that assumes a structural break occurs at
time i. The exception to this is the first submodel of the sample
M1 for which there is no prior data. As we have mentioned,
under our assumptions the data r1, . . . , ri�1 are not informative
about parameters for submodel Mi due to the assumption of a
structural break at time i, while the subsequent data ri, . . . , rt�1

are informative. If u denotes the parameter vector, then p(rt|u,
Ii,t�1, Mi) is the conditional data density associated with sub-
model Mi, given u, and the information set Ii,t�1.

Now consider the situation where we have data up to time t�
1 and we want to consider forecasting out-of-sample rt. A first
step is to construct the posterior density for each of the possible
submodels. If p(u | Mi) is the prior distribution for the param-
eter vector u of submodel Mi, then the posterior density of u for
submodel Mi, based on the information Ii,t�1, has the form

pðujIi;t�1;MiÞ }
pðri; . . . ; rt�1ju;MiÞpðujMiÞ i < t

pðujMiÞ i ¼ t;

�
ð5:1Þ

i¼ 1, . . . , t. For i < t, only data after the assumed break at time i
are used, that is, from i to t � 1. For i ¼ t, past data are not
useful at all since a break is assumed to occur at time t, and
therefore the posterior becomes the prior. Thus, at time t� 1 we
have a set of submodels fMigt

i¼1; which use different numbers
of data points to produce predictive densities for rt. For exam-
ple, given {r1, . . . , rt�1}, M1 assumes no breaks in the sample
and uses all the data r1, . . . , rt�1 for estimation and prediction;
M2 assumes a break at t ¼ 2 and uses r2, . . . , rt�1; . . . ; Mt�1,
assumes a break at t� 1 and uses rt�1; and finally Mt assumes a
break at t and uses no data. That is, Mt assumes a break occurs
out-of-sample, in which case, past data are not useful.

In the usual way, the predictive density for rt associated with
submodel Mi is formed by integrating out the parameter
uncertainty,

pðrtjIi;t�1;MiÞ ¼
Z

pðrtjIi;t�1; u;MiÞpðujIi;t�1;MiÞdu;

i ¼ 1; . . . ; t:

ð5:2Þ
For Mt the posterior is the prior under our assumptions. Esti-
mation of the predictive density is discussed in Section 5.6.

5.2 Combining Submodels

As noted in Section 1, our structural break model must learn
about breaks in real time and combine submodel predictive
densities. The usual Bayesian methods of model comparison
and combination are based on the marginal likelihood of a
common set of data which is not the case in our setting since
the submodels fMigt

i¼1 are based on different histories of data.
Therefore, we require a new mechanism to combine sub-
models. We consider two possibilities in this article. First, that
the probability of a structural break is determined only from
subjective beliefs. For example, financial theory or nonsample
information may be useful in forming these beliefs. Our second
approach is to propose a stochastic process for the arrival of
breaks and estimate the parameter associated with that arrival
process. We discuss the first approach in this subsection; in the
next subsection we deal with our second approach which
requires estimation of the break process.

Before observing rt the financial analyst places a subjective
prior 0 # lt # 1, that a structural break occurs at time t. A value
of lt¼ 0 assumes no break at time t, and therefore submodel Mt

is not introduced. This now provides a mechanism to combine
the submodels. Let Lt ¼ {l2, . . . , lt}. Note that L1 ¼ f;g
since we do not allow for a structural break at t ¼ 1.

To develop some intuition, we consider the construction of the
structural break model for the purpose of forecasting, starting
from a position of no data at t ¼ 0. If we wish to forecast r1, all
we have is a prior on u. In this case, we can obtain the predictive
density for r1 as p(r1|I0) ¼ p(r1|I0, M1) which can be computed
from priors using (5.2). After observing r1, p(M1|I1, L1) ¼
p(M1|I1) ¼ 1 since there is only one submodel at this point.

Now allowing for a break at t ¼ 2, that is, l2 6¼ 0, the pre-
dictive density for r2 is the mixture

pðr2jI1;L2Þ ¼ pðr2jI1;1;M1ÞpðM1jI1;L1Þ ð1� l2Þ

þ pðr2jI2;1;M2Þl2:

The first term on the right-hand side (RHS) is the predictive
density using all the available data times the probability of no
break. The second term is the predictive density derived from
the prior assuming a break, times the probability of a break.
Recall that in the second density I2;1 ¼ f;g: After observing r2

we can update the submodel probabilities,

pðM1jI2;L2Þ ¼
pðr2jI1;1;M1ÞpðM1jI1;L1Þð1� l2Þ

pðr2jI1;L2Þ

pðM2jI2;L2Þ ¼
pðr2jI2;1;M2Þl2

pðr2jI1;L2Þ
:

Now we require a predictive distribution for r3 given past
information. Again, allowing for a break at time t ¼ 3, l3 6¼ 0,
the predictive density is formed as
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pðr3jI2;L3Þ ¼ ½pðr3jI1;2;M1ÞpðM1jI2;L2Þ

þ pðr3jI2;2;M2ÞpðM2jI2;L2Þ�

ð1� l3Þ þ pðr3jI3;2;M3Þl3:

In words, this is (predictive density assuming no break at
t¼ 3) 3 (probability of no break at t¼ 3)þ (predictive density
assuming a break at t ¼ 3) 3 (probability of a break at t ¼ 3).
Once again p(r3|I3,2, M3) is derived from the prior. The updated
submodel probabilities are

pðM1jI3;L3Þ ¼
pðr3jI1;2;M1ÞpðM1jI2;L2Þð1� l3Þ

pðr3jI2;L3Þ
ð5:3Þ

pðM2jI3;L3Þ ¼
pðr3jI2;2;M2ÞpðM2jI2;L2Þð1� l3Þ

pðr3jI2;L3Þ
ð5:4Þ

pðM3jI3;L3Þ ¼
pðr3jI3;2;M3Þl3

pðr3jI2;L3Þ
: ð5:5Þ

In this fashion we sequentially build up the predictive dis-
tribution of the break model. As a further example of our model
averaging structure, consider Figure 1 which displays a set of
submodels available at t ¼ 10, where the horizontal lines indi-
cate the data used in forming the posterior for each submodel.
The forecasts from each of these submodels, which use different
data, are combined (the vertical line) using the submodel
probabilities. Since at period t ¼ 10, there are no data available
for period 11, the point M11 on Figure 1 represents the prior
density in the event of a structural break at t ¼ 11. If there has
been a structural break at say t ¼ 5, then as new data arrive, M5

will receive more weight as we learn about the regime change.
Intuitively, the posterior and predictive density of recent

submodels after a break will change quickly as new data arrive.

Once their predictions warrant it, they receive larger weights in
the model average. Conversely, posteriors of old submodels
will only change slowly when a structural break occurs. Their
predictions will still be dominated by the longer and older data
before the structural break. Note that our inference automati-
cally uses past data prior to the break if predictions are
improved. For example, if a break occurred at year 2000 but the
submodel M1990, which uses data from year 1990 onward for
parameter estimation, provides better predictions, then the
latter submodel will receive relatively larger weight. As more
data arrive, we would expect the predictions associated with
submodel M2000 to improve and thus gain a larger weight in
prediction. In this sense the model average automatically picks
submodels at each point in time based on predictive content.

Given this discussion, and a prior on breaks, thegeneral predictive
density for rt, for t > 1, can be computed as the model average

pðrtjIt�1;LtÞ ¼
Xt�1

i¼1

pðrtjIi;t�1;MiÞpðMijIt�1;Lt�1Þ
" #

3 ð1� ltÞ þ pðrtjIt;t�1;MtÞlt: ð5:6Þ

The first term on the RHS of (5.6) is the predictive density from
all past submodels that assume a break occurs prior to time t.
The second term is the contribution assuming a break occurs at
time t. In the latter, past data are not useful and only the prior
density is used to form the predictive distribution. The terms
p(Mi|It�1, Lt�1), i¼ 1, . . . , t� 1 are the submodel probabilities,
representing the probability of a break at time i given infor-
mation It–1, and are updated each period after observing rt as

pðMijIt;LtÞ

¼

pðrtjIi;t�1;MiÞpðMijIt�1;Lt�1Þð1� ltÞ
pðrtjIt�1;LtÞ

1 # i < t

pðrtjIt;t�1;MtÞlt

pðrtjIt�1;LtÞ
i ¼ t:

8>>><
>>>:

ð5:7Þ

In addition to being inputs into (5.6) and other calculations
below, the submodel probabilities also provide a distribution at
each point in time of the most recent structural break inferred
from the current data. Recall that submodels are indexed by
their starting point. Therefore, if submodel Mt9 receives a high
posterior weight given It with t > t9, this is evidence of the most
recent structural break at t9.

Posterior estimates and submodel probabilities must be built
up sequentially from t ¼ 1 and updated as new data become
available. At any given time, the posterior mean of some
function of the parameters, g(u), accounting for past structural
breaks can be computed as,

E½gðuÞjIt;Lt� ¼
Xt

i¼1

E½gðuÞjIi;t;Mi�pðMijIt;LtÞ: ð5:8Þ

This is an average at time t of the submodel-specific posterior
expectations of g(u), weighted by the appropriate submodel
probabilities. Submodels that receive large posterior proba-
bilities will dominate this calculation.

Similarly, to compute an out-of-sample forecast of g(rtþ1)
we include all the previous t submodels plus an additional

Figure 1. Individual submodels and the submodel average. This
figure is a graphical depiction of how the predictive density of excess
returns is constructed for the structural break model. This corresponds
to Equation (5.6). The predictive density is computed for each of the
submodels M1, . . . , M10 given information up to t ¼ 10. The final
submodel M11 postulates a break at t ¼ 11 and uses no data but only a
prior distribution. Each submodel is estimated using a smaller history
of data (horizontal lines). Weighting these densities via Bayes’ rule
(vertical line) gives the final predictive distribution (model average) of
excess returns for t ¼ 11.
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submodel which conditions on a break occurring out-of-sample
at time tþ 1 assuming ltþ1 6¼ 0. The predictive mean of g(rtþ1) is

E½gðrtþ1ÞjIt;Ltþ1�¼
Xt

i¼1

E½gðrtþ1ÞjIi;t;Mi�pðMijIt;LtÞð1�ltþ1Þ

þ E½gðrtþ1ÞjItþ1;t;Mtþ1�ltþ1:

ð5:9Þ

Note that the predictive mean from the last term is based only
on the prior as past data before t þ 1 are not useful in updating
beliefs about u given a break at time t þ 1.

5.3 Estimation of the Probability of a Break

We now specify the process governing breaks and discuss
how to estimate it. As in McCulloch and Tsay (1993) we assume
that the arrival of breaks is iid Bernoulli with parameter l. Given
a prior p(l), we can update beliefs given sample data. From a
computational perspective an important feature of our approach
is that the break process can be separated from the submodel
estimation. The posterior of the submodel parameters (5.1) is
independent of l. Furthermore, the posterior for l is a function
of the submodel predictive likelihoods, which have parameter
uncertainty integrated out. Therefore, the likelihood is a func-
tion of only one parameter, so the posterior for l is

pðljIt�1Þ}pðlÞ
Yt�1

j¼1

pðrjjIj�1; lÞ; ð5:10Þ

where p(rj|Ij–1, l) is from (5.6) with Lj ¼ {l2, . . . , lj} ¼ {l,
. . . , l} which we denote as l henceforth. To sample from this
posterior we use a Metropolis-Hastings routine with a random
walk proposal. Given l ¼ l(i), the most recent draw from the
Markov chain, a new proposal is formed as l9¼ lþ e where e is a
symmetric density. This is accepted, l(iþ1)¼ l9, with probability
min pðl9jIt�1Þ=pðljIt�1Þ;1f g and otherwise rejected, l(iþ1)¼l(i).

After dropping a suitable burn-in sample, we treat the
remaining draws flðiÞgN

i¼1 as a sample from the posterior. A
simulation-consistent estimate of the predictive likelihood of
the break model is

pðrtjIt�1Þ ¼
Z

pðrtjIt�1; lÞpðljIt�1Þdl ð5:11Þ

� 1

N

XN

i¼1

pðrtjIt�1; l
ðiÞÞ: ð5:12Þ

Posterior moments, as in (5.8), must have l integrated out as in

E½gðuÞjIt� ¼ ElE½gðuÞjIt; l�

¼
Xt

i¼1

E½gðuÞjIi;t;Mi�El½pðMijIt; lÞ�; ð5:13Þ

where El[�] denotes expectation with respect to p(l|It). Recall
that the submodel posterior density is independent of l. It is
now clear that the submodel probabilities after integrating out l

are El[p(Mi|It, l)] which could be denoted as p(Mi|It).

5.4 Forecasts

To compute an out-of-sample forecast of some function of
rtþ1, g(rtþ1), we include all the previous t submodels plus an

additional submodel which conditions on a break occurring
out-of-sample at time tþ 1. The predictive density is derived from
substituting (5.6) into the right-hand side of (5.11). Moments of
this density are the basis of out-of-sample forecasts. The pre-
dictive mean of g(rtþ1), as in (5.9), after integrating out l is

E½gðrtþ1ÞjIt� ¼ ElE½gðrtþ1ÞjIt; l� ð5:14Þ

¼
Xt

i¼1

E½gðrtþ1ÞjIi;t;Mi�El½pðMijIt; lÞð1� lÞ�

þ E½gðrtþ1ÞjItþ1;t;Mtþ1�El½l�:

ð5:15Þ

E[g(rtþ1)|Ii,t, Mi] is an expectation with respect to a submodel
predictive density and is independent of l. El[�] denotes an
expectation with respect to p(l|It). These additional terms
are easily estimated with El½pðMijIt;lÞ ð1� lÞ� � 1=N

PN
i¼1

pðMijIt; l
ðiÞÞð1� lðiÞÞ; and El½l� � 1=N

PN
i¼1 lðiÞ:

Multiperiod forecasts are computed in the same way,

E½gðrtþ2ÞjIt� ¼
Xt

i¼1

E½gðrtþ2ÞjIi;t;Mi�El½pðMijIt; lÞð1� lÞ2�

þ E½gðrtþ2ÞjItþ1;t;Mtþ1�El½lð1� lÞ�

þ E½gðrtþ2ÞjItþ2;t;Mtþ2�El½l�
ð5:16Þ

which allows for a break at time t þ 1 and t þ 2. Note that the
last two expectations with respect to returns in (5.16) are
identical and derived from the prior. Grouping them together
gives the term E[g(rtþ2)|Itþ1,t, Mtþ1]El[l(1 þ (1 � l))]. Fol-
lowing this, the h-period expectation is

E½gðrtþhÞjIt� ¼
Xt

i¼1

E½gðrtþhÞjIi;t;Mi�El½pðMijIt; lÞð1� lÞh�

þ E½gðrtþhÞjItþ1;t;Mtþ1�El½l
Xh�1

j¼0

ð1� lÞj�:

ð5:17Þ

As h! ‘ the weight on the prior forecast E[g(rtþ1)|Itþ1,t, Mtþ1]
goes to 1, and the weight from the submodels that use past
data goes to 0. In essence, this captures the idea that in the short-
run we may be confident in our current knowledge of the return
distribution; but in the long-run we expect a break to occur, in
which case the only information we have is our prior beliefs.

5.5 Predictive Distribution of the Equity Premium

Although the focus of this article is on the predictive long-run
distribution of excess returns, the first moment of this density is
the long-run equity premium. There is an extensive literature
that uses this unconditional premium. Much of this literature
uses a simple point estimate of the premium obtained as the
sample average from a long series of excess return data. For
example, Table 1 in a recent survey by Mehra and Prescott
(2003) lists four estimates of the equity premium using sample
averages of data from 1802–1998, 1871–1999, 1889–2000, and
1926–2000. In addition, many forecasters, including those
using dynamic models with many predictors, report the sample
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average of excess returns as a benchmark. For example, models
of the premium conditional: on earnings or dividend growth
include Donaldson, Kamstra, and Kramer (2006) and Fama and
French (2002); on macro variables, Lettau and Ludvigson
(2001); and on regime changes Mayfield (2004) and Turner,
Startz, and Nelson (1989). Other examples of premium fore-
casts include Campbell and Thompson (2005), and Goyal and
Welch (2008). In this subsection, we explore the implications
for the predictive distribution of the unconditional equity pre-
mium of our approach to forecasting the long-run distribution
of excess returns in the presence of possible structural breaks.

The predictive mean of the equity premium can be computed
using the results in the previous section by setting g(rtþ1) ¼
rtþ1. Note, however, that we are interested in the entire pre-
dictive distribution for the premium, for example, to assess the
uncertainty about the equity premium forecasts. Using the
discrete mixture-of-normals specification as our submodel with
k fixed, the equity premium is g ¼

Pk
i¼1 mipi. Given It�1 we

can compute the posterior distribution of the premium as well
as the predictive distribution. It is important to note that even
though our mixture-of-normals submodel is not dynamic,
allowing for a structural break at t differentiates the posterior
and predictive distribution of the premium. Therefore, since we
are concerned with forecasting the premium, we report features
of the predictive distribution of the premium for period t, given
It�1, defined as,

pðgjIt�1Þ ¼
Xt�1

i¼1

pðgjIi;t�1;MiÞEl½pðMijIt�1; lÞ ð1� lÞ�

þ pðgjIt;t�1;MtÞEl½l�:
ð5:18Þ

This equation is analogous to the predictive density of returns
(5.11).

From the Gibbs sampling output for each of the submodels,
and the posterior of l, we can compute the mean of the pre-
dictive distribution of the equity premium as

E½gjIt�1� ¼
Xt�1

i¼1

E½gjIi;t�1;Mi�El½pðMijIt�1; lÞð1� lÞ�

þ E½gjIt;t�1;Mt�El½l�:
ð5:19Þ

Note that this is the same as (5.15) when g(rtþ1) is set to rtþ1 in
the latter. In a similar fashion, the standard deviation of the
predictive distribution of the premium can be computed fromffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½g2jIt�1� � ðE½gjIt�1�Þ2
q

. This provides a measure of uncer-

tainty about the premium.
In Section 6.4, we provide results for alternative forecasts

of the equity premium. ĝA;t�1 uses all available data weighted
equally (submodel M1) and thus assumes no structural breaks
occur, ĝW ;t�1 is analogous to the no-break forecast in that it
weights past data equally but uses a fixed-length (10 years of
monthly data) moving window of past data rather than all
available data, and ĝB;t�1 uses all available data optimally after
accounting for structural breaks. These forecasts are

ĝA;t�1 ¼ E½gjIt�1;M1� ð5:20Þ

ĝW ;t�1 ¼ E½gjIt�1;Mt�120� ð5:21Þ

ĝB;t�1 ¼ E½gjIt�1�: ð5:22Þ

Recall that the ĝB;t�1 forecasts integrate out all submodel
uncertainty surrounding structural breaks using (5.19).

5.6 Implementation of the Structural Break Model

Estimation of each submodel at each point in time follows
the Gibbs sampler detailed in Section 4. After dropping the first
500 draws of the Gibbs sampler, we collect the next 5,000
which are used to estimate various posterior quantities. We also
require the predictive likelihood to compute the submodel
probabilities (5.7) to form an out-of-sample forecast, for
example, using (5.15). To calculate the marginal likelihood of a
submodel, following Geweke (1995) we use a predictive like-
lihood decomposition,

pðri; . . . ; rtjMiÞ ¼
Yt

j¼i

pðrjjIi;j�1;MiÞ: ð5:23Þ

Given a set of draws from the posterior distribution fuðsÞgN
s¼1

where uðsÞ ¼ fm1; . . . ;mk;s
2
1; . . . ;s2

k ;p1; . . . ;pkg, for sub-
model Mi, conditional on Ii,j�1, each of the individual terms in
(5.23) can be estimated consistently as

pðrtjIi;j�1;MiÞ �
1

N

XN

s¼1

pðrtjuðsÞ; Ii;j�1;MiÞ: ð5:24Þ

This is calculated at the end of each Gibbs run, along with
features of the predictive density. Note that (5.24) enters
directly into the calculation of (5.7). For the discrete mixture-
of-normals specification, the data density is,

pðrtjuðsÞ; Ii;t�1;MiÞ¼
Xk

j¼1

pj
1ffiffiffiffiffiffiffiffiffiffiffi

2ps2
j

q exp � 1

2s2
j

ðrt � mjÞ
2

 !
:

ð5:25Þ

The predictive likelihood of submodel Mi is used in (5.7) to
update the submodel probabilities at each point in time, and to
compute the individual components p(rj|Ij�1) of the structural
break model through (5.11) and hence the marginal likelihood
of the structural break model as

pðr1; . . .; rtÞ ¼
Yt

j¼1

pðrjjIj�1Þ: ð5:26Þ

5.7 Model Comparison

Finally, the Bayesian approach allows for the comparison
and ranking of models by Bayes factors or posterior odds. Both
of these require calculation of the marginal likelihood. The
Bayes factor for model B versus model A is defined as BFB,A ¼
p(r|B)/p(r|A), where p(r|B) is the marginal likelihood for model
B and similarly for model A. A Bayes factor greater than one is
evidence that the data favor B. Kass and Raftery (1995) sum-
marize the support for model B from the Bayes factor as: 1–3
not worth more than a bare mention, 3 to 20 positive, 20 to 150
strong, and greater than 150 as very strong.
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5.8 Selecting Priors

There are several issues involved in selecting priors when
forecasting in the presence of structural breaks. Our model of
structural breaks requires a proper predictive density for each
submodel. This is satisfied if our prior p(u|Mi) is proper. Some
of the submodels condition on very little data. For instance, at
time t � 1 submodel Mt uses no data and has a posterior equal
to the prior. There are also problems with using highly diffuse
priors, as it may take many observations for the predictive
density of a new submodel to receive any posterior support. In
other words, the rate of learning about structural breaks is affected
by the priors. Based on this, we use informative proper priors.

A second issue is the elicitation of priors in the mixture
submodel. While it is straightforward for the one-component
case, it is not obvious how priors on the component parameters
affect features of the excess return distribution when k > 1. For
two or more components, the likelihood of the mixture sub-
model is unbounded which make noninformative priors inap-
propriate (Koop 2003).

To select informative priors based on features of excess
returns, we conduct a prior predictive check on the submodel
(Geweke 2005). That is, we analyze moments of excess returns
simulated from the submodel. We repeat the following steps:
(1) draw u ; p(u) from the prior distribution; (2) simulate
f~rtgT

t¼1 from p(rt|It–1, u); and (3) use f~rtgT
t¼1 to calculate the

mean, variance, skewness and kurtosis. Table 1 reports these
summary statistics after repeating the steps one to three many
times using the priors listed in the footnote of Table 2. The prior
can account for a range of empirically realistic sample statistics
of excess returns. The 95% density region of the sample mean
is approximately [0, 0.1]. The two-component submodel with
this prior is also consistent with a wide range of skewness and
excess kurtosis. In selecting a prior for the single-component
submodel we tried to match, as far as possible, the features of
the two-component submodel. All prior specifications enforce
a positive equity premium.

Although it is possible to have different priors for each
submodel, we use the same calibrated prior for all submodels in
our analysis. Our main results estimate l and use the prior l ;

Beta (0.05, 20). This favors infrequent breaks and allows the
structural break model to learn when breaks occur. We could
introduce a new submodel for every observation but this would

be computationally expensive. Instead, we restrict the number
of submodels to one every year of data. Our first submodel
starts in February 1885. Thereafter, new submodels are intro-
duced in February of each year until 1914, after which new
submodels are introduced in June of each year due to
the missing 4 months of data in 1914 (see Schwert 1990
for details). Therefore, our benchmark prior introduces a
new submodel every 12 months with lt ¼ l; otherwise lt ¼ 0.
We discuss other results for different specifications in Section
6.6.

6. RESULTS

This section discusses the real-time, out-of-sample, forecasts
starting from the first observation to the last. First, we report
the alternative model specifications, priors, and results as
measured by the marginal likelihoods. The preferred specifi-
cation is the structural break model with l estimated and using
a k ¼ 2 submodel, which we focus on for the remainder of the
paper. Then we summarize the results for submodel proba-
bilities from which we can infer probable structural break
points and evaluate submodel uncertainty, as well as compute
an ex post measure of mean useful historical observations. The
next subsection summarizes the dynamics of higher-order
moments of the excess return distribution implied by our pre-
ferred model. This is followed by results for the predictive
distribution for the equity premium when structural breaks are
allowed versus not. We then present an assessment of multi-
period out-of-sample mean and variance forecasts generated by
the structural break versus no-break models. Finally, we pres-
ent results from a robustness analysis.

Table 2. Model specifications and results

Model Prior about breaks Log(ML)

k ¼ 1 lt ¼ 0, no breaks �1,371.22
k ¼ 1 lt ¼ 0, no breaks

10-year moving window
�1,281.94

k ¼ 1 lt ¼ 0.01, every 5 years
otherwise lt ¼ 0

�1,235.33

k ¼ 1 lt ¼ 0.01, every year
otherwise lt ¼ 0

�1,216.08

k ¼ 1 l estimated, break every year
otherwise l ¼ 0

�1,204.17

k ¼ 2 lt ¼ 0, no breaks �1,241.09
k ¼ 2 lt ¼ 0, no breaks

10-year moving window
�1,220.78

k ¼ 2 lt ¼ 0.01, every 5 years
otherwise lt ¼ 0

�1,202.01

k ¼ 2 lt ¼ 0.01, every year
otherwise lt ¼ 0

�1,196.30

k ¼ 2 l estimated, break every year
otherwise l ¼ 0

�1,191.77

NOTE: This tables displays: the number of components, k, in the submodel; the prior on
the occurrence of structural breaks, lt; and the logarithm of the marginal likelihood,
log(ML), for all specifications based on the full sample of observations used in estimation.
The priors are m ; N(b, B)Im>0, s2 ; IG(y/2, s/2) for k ¼ 1; and mi ; N(bi, Bii), s2

i ;

IG(yi/2, si/2), p;Dða1; . . . ;akÞ for k ¼ 2. Hyperparameters are b ¼ 0.03, B ¼ 0.032 , y ¼
9.0, s¼ 4.0 for the k¼ 1 case; and b1¼ 0.05, b2¼� 0.30, B11¼ 0.032 , B22¼ 0.052 , y1¼
10.0, s1 ¼ 3, y2 ¼ 8.0, s2 ¼ 20.0, a1 ¼ 7, a2 ¼ 1 for the k ¼ 2 case. We impose a positive
equity premium by giving zero support to any parameter configuration that violates
g ¼

P
2
i¼1mipi>0. When l is estimated, it has a prior of Beta (0.05, 20).

Table 1. Sample statistics for excess returns implied
by the prior distribution

Mean Median Stdev 95% HPDI

Sample mean 0.0369 0.0354 0.0320 (�0.0238, 0.1007)
Sample variance 0.5808 0.5056 0.3312 (0.1519, 1.1786)
Sample skewness �0.3878 �0.3077 0.4718 (�1.4077, 0.3534)
Sample kurtosis 8.1369 6.4816 5.9317 (2.7169, 18.7218)

NOTE: This table reports summary measures of the empirical moments from the mixture
submodel (k¼ 2) when parameters are simulated from the prior distribution. The priors are
mi ; N(bi, Bii), s2

i ; IG(yi/2, si/2), and p;Dða1; . . . ;akÞ, as described in Section 4.2.
The hyperparameters are found in the footnote to Table 2. First a draw from the prior
distribution gives a parameter vector from which T observations of excess returns are
simulated f~rtgT

t¼1. From these data we calculate the sample mean, variance, skewness and
kurtosis of excess returns. This process is repeated a large number of times to produce a
distribution of each of the excess return moments. Finally, from this empirical distribution
we report the mean, median, standard deviation, and the 95% highest posterior density
interval (HPDI).
See note on p. 9
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6.1 Model Specification and Density Forecasts

A summary of the model specifications, including priors, is
reported in Table 2. The first panel of this table reports results
using the Gaussian submodel specification (k¼ 1); whereas the
second panel results refer to the case with the more flexible
two-component (k ¼ 2) mixture-of-normals specification for
submodels. In each panel we report results for the no-break
model which uses all historical data weighted equally, a no-
break model which uses a 10-year moving window of equally-
weighted historical data, and our structural change models that
combine submodels in a way that allows for breaks. We report
results for several alternative parameterizations of the struc-
tural change model depending on how often we introduce new
submodels (1 versus 5 years) and whether we estimate the
probability of structural breaks, or leave it at a fixed value.

Table 2 also records the logarithm of the marginal likelihood
values, log(ML), for each of the models based on our full
sample of historical observations. Recall that this summarizes
the period-by-period forecast densities evaluated at the realized
data points. That is, it is equal to the sum of the log predictive
likelihoods over the sample. This is the relevant measure of
out-of-sample predictive content of a model (Geweke and
Whiteman 2006). According to the criterion summarized in
Section 5.7, there is overwhelming evidence in favor of
allowing for structural breaks. Based on the log(ML) values
reported in Table 2, the Bayes factor for the break model
against the no-break alternative is around exp(167) for the one-
component submodel specification. Even with the more flexi-
ble two-component submodel specification, the Bayes factor
comparing the model that allows a structural break every year
versus the no-break alternative is a very large number,
exp(�1,191.77 þ 1,241.09) ¼ exp(49.32). Therefore, we find

very strong evidence for structural breaks, regardless of the
specification of the submodels (k ¼ 1 versus k ¼ 2).

Note that in each case, the best structural break model is the
one that allows a break every year. Figure 2 plots the posterior
mean for estimates of l over the entire sample. The ex
ante probability of a break is higher throughout the sample for
the less flexible k ¼ 1 submodel parameterization. For exam-
ple, at the end of the sample, the estimated l is 0.131 (k ¼ 1)
versus 0.106 for the k ¼ 2 submodel parameterization. This
indicates that the less flexible k ¼ 1 specification finds more
breaks.

Note that using the two-component (k ¼ 2 mixture-of-nor-
mals) specification for submodels always results in log(ML)
values that are significantly higher than using the Gaussian
submodel specification (k ¼ 1). These results provide very
strong support for the two-component submodel specification.
Therefore, for the remainder of the paper, we will focus on
results for that more flexible submodel specification with l

estimated from the data.
In Figure 3 we illustrate the rejection of the no-break fore-

casts by plotting, at each point in time, the difference in the
cumulative predictive likelihood from the break model versus
the no-break alternative. Up to 1930 there was no significant
difference. There is a large difference after 1930 but also smaller
on-going improvements in the performance of the break model
versus the no-break alternative until the end of the sample.

At various points above we mentioned the common practice
of using a fixed-length moving window of historical data to
reduce the impact of potential structural changes on forecasts.
Table 2 reports that our structural change models, which
optimally weight historical data, very strongly reject a 10-year
moving window of equally-weighted historical data. The Bayes

Figure 2. Estimates of l through time.

Figure 3. Difference in the cumulative sum of the log predictive likelihoods. This figure displays the difference at each point in time in the
logarithm of the marginal likelihood (logarithm of equation 5.26) for the break versus the no-break models with k ¼ 2 submodel specifications.
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factor is exp(�1,204.17 þ 1,281.94) ¼ exp(77.77) using a k ¼
1 submodel specification, and exp(29) using a k ¼ 2 submodel
specification.

6.2 Submodel Probabilities: Inferred Structural Breaks

The number of submodels is increasing with time; in this
application we introduce a new submodel every 12 months.
The probability associated with submodel Mi at time t can be
interpreted as the probability that there was a break point at
date i given data up to time t. The submodel probability dis-
tribution is the cross-section of the submodel probabilities at a
particular point in time. Usually the structural change model is
quite decisive in allocating weight to a particular submodel. For
example, the submodel probability distribution at 1960:01
assigns most of the weight to the 1940 submodel.

Figure 4 plots the submodel probabilities over time for some
specific submodels. As shown in the top panel, for the first 45
years of the sample the first submodel, M1885, receives most
of the probability. There was some preliminary evidence of a
possible break in 1893. For example, starting in 1894:1 the
1893 submodel gets a probability weight of 0.45 but it drops
the following month to 0.12 with the 1885 submodel returning
to a weight of 0.85, although 1893 still gets greater than 0.10
weight until 1902:9. Thus learning as new data arrive can play
an important role in revising previous beliefs regarding possi-
ble structural breaks. Recall that these probability assessments
are based on data available in real time. As such, they represent
the inference available to financial analysts at the time.

To illustrate the importance of a flexible parameterization of
the submodel for the unconditional distribution of excess
returns, consider the time-series of probability for the M1893

Figure 4. Submodel probabilities over time, k ¼ 2.
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submodel when we use the Gaussian (k ¼ 1) submodel speci-
fication. As shown in Figure 5, for the k¼ 1 case the probability
of a break in 1893:2 shoots up from 0.003 in 1893:6 to 0.91
by 1893:8. However, by the start of 1903 the probability
assigned to submodel M1893 has fallen to less than 0.10,
whereas the M1895 submodel is again assigned the majority of
the probability weight. Using a Gaussian submodel specifica-
tion that doesn’t allow the unconditional distribution of excess
returns to have fat tails and/or skewness, can lead to outliers
being identified, in real time, as breaks. This inference is later
revised as more data becomes available. However, as described
above and displayed in Figure 5, our flexible (k¼ 2 mixture-of-
normals) parameterization of the submodel is less susceptible
to this problem of temporarily identifying false breaks in real
time. This example underscores the importance of accurately
modeling financial returns prior to an analysis of structural
breaks. In other words, misspecified models may provide
evidence of structural breaks when the underlying data gen-
erating process (DGP) is stable.

The first submodel of the sample, M1885, continues to receive
most of the support until 1929. There is very strong evidence of
a structural break in 1929. By 1930:10, the M1929 submodel has
a probability weight of greater than 0.50 and 0.76 by 1931:4,
which indicates fast learning about the change in the dis-
tribution of excess returns. As discussed further below, the
identified break in the excess return distribution in 1929 is
primarily due to higher-order moments such as volatility (see
Figure 7). However, the break has implications for the pre-
dictive distribution for the long-run equity premium, as well as
higher-order moments of excess returns.

There is an increase in submodel uncertainty during the
1930s. From 1935 to mid-1943, the 1934 submodel receives
some weight, as high as 0.70 by 1937:3. However, this break is
short-lived, the next major break occurs in 1940. As shown in
the third panel of Figure 4, the M1940 submodel receives the
most probability weight (in excess of 0.50) until 1970.

In the early 1970s there is evidence of a break in 1969. The
M1940 submodel lost its position of having the most probability

Figure 5. Probabilities for M1893: Example of a false break.

Figure 6. Mean useful observations, k ¼ 2. This figure shows the mean useful observations MUOt defined as MUOt ¼
Pt

i¼1885ðt þ 1� iÞ
pðMijItÞ, which is the expected number of useful observation for model estimation at each point in time. p(Mi|It) is the posterior submodel
probability for Mi given the information set It and

Pt
i¼1885 ipðMijItÞ is the mean of the submodel distribution at time t. If there are no structural

breaks then MUOt would follow the 45-degree line. A fixed-length moving window would correspond to a horizontal line at the window length
number of observations.
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weight for the first time in 1970:04 when the M1969 submodel is
assigned a weight of 0.62 as opposed to 0.16 for the M1940

submodel. However, during the first half of the 1970s there was
considerable submodel uncertainty. For example, by 1976:6 the
probability weight is almost equally shared by the M1969, M1973,
and M1974 submodels, after which the 1969 and 1975 submodels
share the significant probability weight until the early 1990s.

Finally, there is submodel uncertainty again from 1991 to the
end of the sample. The probability of a break during this period
is about 0.50 with the highest probability assigned to the M1991,
M1992, and eventually the M1998 submodels. By the end of the
sample M1999, M2000, and M2003 also receive significant weight.
This reveals considerable submodel uncertainty at the end of the
sample. That is, we do not have enough data to infer the exact
date of recent structural breaks. Nevertheless, it does not matter
for our real-time forecasts since we use all of the information,
appropriately weighted, and integrate out that submodel uncertainty.

In summary, we find evidence for breaks in 1929, 1934, 1940,
and 1969, as well as possible breaks in the mid-1970s, the early
1990s and sometime from 1998 through the end of the sample.
Our results highlight several important points. First, the iden-
tification of structural breaks depends on the data used, and false
assessments may occur which are later revised when more data
become available. This is an important aspect of learning about
structural breaks in real time. Second, our evidence of submodel

uncertainty indicates the problem with using only one submodel
for any particular forecast. In a setting of submodel uncertainty,
the optimal approach is to use the probability-weighted sub-
model average which integrates out the submodel uncertainty.

Finally, we can compare dates identified by our real-time
approach to those found by Pastor and Stambaugh (2001) and
Kim, Morley, and Nelson (2005) who use the whole sample and
derive smoothed (ex post) estimates of the equity premium. Note
that these papers assume a normal density, which we find strong
evidence against, and impose a particular structure between the
conditional mean and variance, which we do not. Based on a
sample from 1926–1999, Kim, Morley, and Nelson (2005) find
a permanent decrease in volatility in the 1940s which induces a
structural break in the premium through their risk-return model.
In addition to a risk-return link, Pastor and Stambaugh (2001)
also impose a prior that the premium and prices (realized
returns) move in opposite directions during transition from one
level of the premium to the next. Using data from 1834–1999,
they find several breaks including 1940 and one in the early
1990s for which there is also evidence in our case.

6.3 Results for Mean Useful Historical Observations

The evidence in the previous subsection suggests that we
should not put equal weights on historical data for optimal

Figure 7. Higher-order moments of excess returns through time. Displayed are the posterior means of the moments of the excess return
distribution as inferred from the structural break model with k¼ 2 submodel specification. Each moment is estimated using only information in It

at each point in time. The moments in Equations (3.6)–(3.8) are computed for each Gibbs draw from the posterior distribution for each of the
submodels Mi. The submodel specific moments are averaged using Equation (5.13). This is repeated at each observation in the sample starting
from t ¼ 1. The evolution of the excess return moments reflect both learning (as more data arrive) and the effect of structural breaks.
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forecasts in the presence of possible structural breaks.
Although our structural break forecasts consider all of the
available historical data, the submodel average assigns proba-
bility weights to individual submodels only when their con-
tribution to the marginal likelihood warrants it. Therefore, the
distribution of submodel probabilities allows us to derive an ex
post measure of the average number of useful observations at
each point in time. This ‘mean useful observations’ measure
(MUOt) is defined as

MUOt ¼
Xt

i¼1885

ðt þ 1� iÞpðMijItÞ: ð6:1Þ

Note that
Pt

i¼1885 ipðMijItÞ, in Equation (6.1), is the mean of
the submodel distribution at time t.

For example, at 1960:01 a probability of 0.63 was assigned
to the 1940 submodel. Therefore, at 1960, the mean of the
submodel distribution will be about 1940 and the mean useful
observations will be about 21 years. Note, however, that our
structural change model considers all of the available historical
data but assigns very small weights to submodels prior to 1940
(longer samples) as well as to submodels after 1940 (shorter
samples).

Our ‘‘mean useful observations’’ measure defined by (6.1) is
analogous to that in Pesaran and Timmermann (2002) who use
a reverse-order CUSUM test to identify the most recent struc-
tural break and consequently the number of useful observa-
tions. For example, using a sample of monthly observations
from 1954:1–1997:12, they find breaks in 1969, 1974, and 1990
which is consistent with our results discussed in Section 6.2.

Time-series of our MUOt measure are displayed in Figure 6.
The 45-degree line corresponds to the no-break specification
which uses all available data at each point in time. Consistent
with our discussion in the previous subsection, the structural
break model uses most of the data until around 1930 where
the average number of useful observations drops dramatically.

Around 1940 the useful observations begin to steadily increase
till further declining in the 1970s and 1990s. In this figure, a
moving window model would be represented as a horizontal
line. For example, a moving window estimate using the most
recent 10 years of data would be a horizontal line at 120.
According to our model, this estimate would not be optimal
during any historical time period.

6.4 Predictive Distribution of the Equity Premium

The purpose of our article is to provide forecasts of the
distribution of excess returns that accommodate uncertainty
about past and future structural breaks. However, as outlined
in Section 5.5, we can also evaluate the implications for the
predictive distribution of the equity premium. If there were no
structural breaks, and excess returns were stationary, it would
be optimal to use all available data weighted equally. However,
in the presence of breaks, our forecast of the premium, and our
uncertainty about that forecast, could be very misleading if our
modeling/forecasting does not take account of those structural
breaks.

Panel A of Figure 8 illustrates out-of-sample forecasts
(predictive mean) of the equity premium, period-by-period, for
both the structural break model and the no-break alternative.
These are the forecasts ĝB;t�1, computed from Equation (5.19),
which optimally use past data in the presence of possible
structural breaks, versus ĝA;t�1, computed from Equation
(5.20), which assumes no breaks. Henceforth, we refer to
ĝA;t�1, which is associated with submodel M1885, as the no-
break specification. The premium forecasts are similar until
the start of the 1930s where they begin to diverge. The 1940
structural break results in clear differences in the equity pre-
mium forecasts for the break and no-break models. The pre-
mium forecasts from the structural break model rise through
the 1940s to the 1960s. Toward the end of the sample the
premium decreases to values substantially lower than the

Figure 8. Predictive distribution of the rremium through time, k ¼ 2. Panel A displays the out-of-sample forecasts (predictive mean) of the
equity premium period-by-period for both the structural break model, as in Equation (5.19), and the no-break alternative. Panel B displays the
corresponding standard deviation of the predictive distribution of the equity premium.
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no-break model. The final premium forecast at the end of the
sample is 3.79% for the preferred structural break model.

The second panel of Figure 8 displays the standard deviation
of the predictive distribution of the premium. This is a measure
of the uncertainty of our premium estimate in panel A. For the
no-break model, uncertainty about the equity premium forecast
originates from parameter uncertainty only, while for the
structural break model it comes from both parameter and
submodel uncertainty. Here again there are differences in the
two specifications. The model that uses all data and ignores
structural breaks shows a steady decline in the standard devi-
ation of the premium’s predictive distribution as more data
become available. That is, for a structurally stable model, as we
use more data we become more confident about our premium
forecast. However, the standard deviation of the predictive
distribution for the premium from the break model shows that
this increased confidence is misleading if structural breaks
occur. As the second panel of Figure 8 illustrates, when a break
occurs our uncertainty about the premium increases.

In Section 5.5, we referred to an additional method often
used to estimate the long-run equity premium. The estimator
ĝW ;t�1, computed as in Equation (5.21), recognizes that the
distribution of excess returns may have undergone a structural
break. However, this method just uses a 10-year moving win-
dow with equal weights on historical data for estimation.
Relative to the no-break alternative, these forecasts have the
advantage of dropping past data which may bias the forecast,
but with the possible disadvantage of dropping too many data
points, resulting in a reduction in the accuracy of the premium
estimate. In addition, this estimator is implicitly assuming that
structural breaks are reoccurring at regular intervals by using a
fixed-length window of data at each point in time. Figure 9
compares 10-year moving window forecasts, at each point in
time, to our forecasts that allow breaks, ĝB;t�1 computed from
(5.19). Note that the simple moving-window sample average is
too volatile to produce realistic results. In some periods the
sample average is negative while in other periods it is fre-
quently in excess of 10%.

6.5 Forecasts of Long-Horizon Returns

As discussed in Section 6.1, allowing for asymmetries and
fat tails in the submodel specification (k¼ 2) results in superior
density forecasts relative to the special case with k ¼ 1. Figure

7 displays the posterior mean of the variance, skewness, and
kurtosis of the excess returns distribution at each point in the
sample using only information available to that time. The
dynamics of the moments of the excess return distribution
inferred from the structural break model are substantially dif-
ferent than those for the no-break model. For example, the no-
break model cannot accommodate structural changes so the
break in 1929 shows up in that case as a large permanent change
in both skewness and kurtosis in the long-run distribution of
excess returns. These differences are likely to have significant
effects on out-of-sample forecasts important for risk management.

To further illustrate this point, we computed out-of-sample
mean and variance forecasts for the h-month cumulative return,Ph

i¼1 rtþi. The mean forecast is
Ph

i¼1 Et½rtþi�, and the variance
forecast is

Ph
i¼1 vart½rtþi�. They are evaluated against the

realized cumulative return and the cumulative realized vola-
tility

Ph
i¼1 RVtþi. RVtþi is computed using the sum of intra-

month squared daily returns. This is done for the no-break
and break model. The break model allows for out-of-sample
breaks every 12 months and forecasts are calculated as in
Section 5.4.

Table 4 reports forecast results for the k ¼ 2 submodel
specification and starting the out-of-sample forecasts at month
701 (half-way through the sample at 1943:9). For an horizon of
h ¼ 120 months, the root mean squared error (RMSE) for the
mean forecast from the break model is 7.36 versus 7.51 for the
no-break model. The variance forecast is 22.5 for the structural
change model versus 28 for the no-break alternative. For a
forecast horizon of 20 years (240 months), the corresponding
RMSE results are 11.47 versus 11.86 for the mean and 56.61
versus 67.71 for the variance. In other words, the out-of-sample
mean and variance forecasts using the model that accom-
modates structural breaks dominate those from a forecasting
procedure that ignores breaks. Of course the superior density
forecasts for the structural change models reported in Table 2
are not just due to superior mean and variance forecasts but
rather due to improved fit of the entire distribution of excess
returns. For example, a risk manager may also be interested in
the improved fit of the tails of the distribution discussed above.

6.6 Robustness

Table 1 reports sample statistics for the excess return dis-
tribution when parameters are simulated from the assumed

Figure 9. Comparison of premium forecasts. This figure compares the forecasts (predictive mean) of the long-run equity premium from the
structural break model, along with the sample average that uses a moving window of 10 years of data. The sample average at time t is defined as
1=120

P120
i¼1 rt�iþ1.
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distributions for priors described in Section 4.2. These empir-
ical moments seem reasonable. For robustness, we also tried
some alternative priors. For example, as discussed at the end of
Section 5.8, we set the prior probability of breaks, lt, to 0.01
which favors infrequent breaks. As indicated in Table 3, we
redid all of our estimation and forecasting favoring more fre-
quent structural breaks by assuming that lt ¼ 0.02. Recall that
we allow for one break per year so that this corresponds to an
expected duration of 50 years between breaks. The results were
very similar. In particular, the log(ML) for the best model was
�1,194 when lt¼ 0.02 instead of�1,196 for lt¼ 0.01. Table 3
also shows results when we consider more diffuse priors for other
parameters. They all provide strong evidence against the no-
break model and are consistent with previous results.

Another possibility is to reset priors each period to the most
recent posterior. As an example in this direction, whenever a
new submodel is introduced we set the prior parameters for the
premium to the previous posterior mean and variance of g. That
is, during any period a new submodel is introduced, the prior on
g begins centered on the most recent posterior for g based on
available data. We did this for the l¼ 0.01 case using the k¼ 1
submodel specification. The main difference in the premium
forecasts for this case was that the premium was slightly less
variable and also had a reduced standard deviation of the pre-
dictive distribution for the premium. However, the marginal
likelihood is �1,216.18 which is slightly worse than our
original prior in Table 2 for k ¼ 1, and still inferior to the k ¼ 2
specification.

7. CONCLUSION

In summary, we provide an approach to forecasting the
unconditional distribution of excess returns making optimal
use of historical data in the presence of possible structural
breaks. We focus on learning about structural breaks in real
time and assessing their impact on out-of-sample forecasts. As
a byproduct, this procedure identifies, in real time, probable
dates of structural change. Since structural breaks can never be
identified with certainty, our approach is to use a probability-
weighted average of submodels, each of which is estimated
over a different history of data. Our forecasts consider all of the
available historical data but only assign weight to individual
submodels when their contribution to the marginal likelihood
warrants it. Since the predictive density of returns integrates
over the submodel distribution, uncertainty about structural
breaks is accounted for in the analysis. This article illustrates
the importance of uncertainty about structural breaks and the
value of modeling higher-order moments of excess returns

when inferring structural breaks and forecasting the return
distribution and its moments.

We use a two-component discrete mixture-of-normals
specification for the submodel. This is the parameterization of
excess returns which is subject to structural breaks. For
robustness, we compare our results using this flexible sub-
model specification to the nested Gaussian submodel specifi-
cation to see if it affects our inference about structural change
or our real-time forecasts. Our evidence clearly supports a
structural break model using the more flexible parameter-
ization of the submodel. This richer two-component submodel
is also more robust to false breaks.

The empirical results strongly reject ignoring structural
change in favor of our forecasts which weight historical data to
accommodate uncertainty about structural breaks. We also
strongly reject the common practice of using a fixed-length
moving window.

Structural change has implications for the entire shape of
the long-run excess return distribution. The preferred struc-
tural change model produces kurtosis values well above three
and negative skewness throughout the sample. Furthermore,
the shape of the long-run distribution and the dynamics of the
higher-order moments are quite different from those gen-
erated by forecasts which cannot capture structural breaks. As
we show, ignoring structural change results in misspeci-
fication of the long-run distribution of excess returns which
can have serious implications for long-run forecasts and risk
assessments.

To answer the question in the title of our article, our article
says that one should use all available data but weight data
histories optimally according to their contribution to forecasts
at each point in time. For most of our sample, older data tends
to get low weights fairly quickly but a critical result is that it is
very suboptimal to use a fixed-length moving window to cap-
ture this effect. That is, our results show that the value of his-
torical data varies considerably over time. We provide a way of
using all available data but assigning appropriate weights to the
component data histories. Finally, we show the implications of
differences in the no-break versus optimal forecasts. These
differences are significant and may be important for risk
management and long-horizon investment decisions.

Table 3. Model robustness, k ¼ 2

Changes in prior Log(ML)

lt ¼ 0.02 �1,194.02
B11 ¼ 0.122, B22 ¼ 0.22 �1,197.21
y1 ¼ 5, y2 ¼ 4 �1,201.43
B11 ¼ 0.122, B22 ¼ 0.22, y1 ¼ 5, y2 ¼ 4 �1,203.09

NOTE: This tables displays, for the k ¼ 2 case, the log marginal likelihood for changes
to the benchmark prior b1 ¼ 0.05, b2 ¼ � 0.30, B11 ¼ 0.032 , B22 ¼ 0.052 , y1 ¼ 10.0, s1 ¼
3, y2 ¼ 8.0, s2 ¼ 20.0, a1 ¼ 7, a2 ¼ 1, and lt ¼ 0.01 for one month of every year and
otherwise lt ¼ 0.

Table 4. Out-of-sample forecasts, k ¼ 2

RMSEPh
i¼1 Et½rtþi� forecast of

Ph
i¼1 rtþi

h months Break No break
1 0.5171 0.5178
12 1.9352 1.9481
120 7.3571 7.5141
240 11.4729 11.8636Ph

i¼1 vart½rtþi� forecast of
Ph

i¼1 RVtþi

1 0.4916 0.5250
12 2.7656 3.3698
120 22.4951 28.0098
240 56.6081 67.7051

NOTE: Root-Mean-Squared Error (RMSE) is associated with period-by-period forecasts
of the mean and variance of the h-month cumulative return over the second half of the
sample (from month 701 to the end of the sample). Realized volatility, RVtþi is estimated
as the sum of intramonth daily squared returns.
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APPENDIX

This appendix provides additional details concerning compu-
tations for each of the Gibbs sampling steps for the submodels.
Conditional on Z and s2 the conditional posterior for mj, j ¼
1, . . . , k is

mj jZ;s2; r ; NðM;V�1Þ ðA:1Þ

M ¼ V�1 s�2
j

XT

t¼1

zt;jrt þ B�1
jj bj

 !
ðA:2Þ

V ¼ s�2
j Tj þ B�1

jj : ðA:3Þ

where Tj ¼
PT

t¼1 zt;j. The conditional posterior of s2
j is

s2
j jZ;m; r ; IG

yj þ Tj

2
;

PT
t¼1

ðrt � mjÞ
2zt;j þ sj

2

0
BB@

1
CCA;

j ¼ 1; . . . ; k: ðA:4Þ

Only the observations attributed to component j are used to
update mj and s2

j. With the conjugate prior for p, we sample
the component probabilities as

p ; Dða1 þ T1; . . . ;ak þ TkÞ: ðA:5Þ

Finally, to sample zt,i, note that

pðzt;ijr;m;s;pÞ} pi
1ffiffiffiffiffiffiffiffiffiffiffi

2ps2
i

p exp � 1

2s2
i

ðrt � miÞ
2

� �
;

i ¼ 1; . . . ; k;

ðA:6Þ

which implies that they can be sampled as a multinomial dis-
tribution for t ¼ 1, . . . , T.

It is well known that in mixture models the parameters are
not identified. For example, switching all states Z and the
associated parameters gives the same likelihood value.
Although identification can be imposed through prior restric-
tions, our interest centers on the moments of the return dis-
tribution and not the underlying mixture parameters. The
moments of returns are identified. If, for example, we switch
all the parameters of component one and two we still have
the same premium value g ¼

Pk
i¼1 mipi. Therefore, we do not

impose identification of the component parameters but instead
compute the mean, variance, skewness, and kurtosis using
(3.3)–(3.8) after each iteration of the Gibb sampler. It is these
posterior quantities that our analysis focuses on. In the empir-
ical work, we found the Markov chain governing these moments
to mix very efficiently. As such, 5,000 Gibbs iterations, after a
suitable burning period provide accurate estimates.
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