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Abstract

We propose a new joint model of intraday returns and durations to study the dy-
namics of several Chinese stocks. We include three U.S. stocks for comparison. Flexible
innovation distributions are used for durations and returns, and the total variance of
returns is decomposed into different volatility components associated with different
transaction horizons. The new model provides strong improvements in density fore-
casts for duration and returns and only modest gains for points forecasts of the variance
of returns. The conditional hazard functions are non-monotonic and there is strong
evidence for different volatility components. Although diurnal patterns, volatility com-
ponents, and market microstructure implications are similar across the markets, there
are interesting differences. Durations for lightly traded Chinese stocks tend to carry
more information than heavily traded stocks. Chinese investors usually have longer
investment horizons, which may be explained by the specific trading rules in China.
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1 Introduction

As China moves toward its potential output and commands an increasing share of world
output, trade and commerce, it is important to study the properties of its domestic asset
market. Despite the importance that China has on the world stage, there is little to no
research on the time-series properties of intraday Chinese stock returns.1 The purpose of
this paper is to begin to fill that gap. We propose a new joint model of intraday returns and
duration to study the dynamics of several Chinese stocks. Besides using flexible innovation
distributions the conditional variance is made of multiple components based on transaction
time which contributes to large improvements in density forecasts compared to existing
models. We include three U.S. stocks for comparison purposes and highlight the similarities
and differences.

The final frontier in the time-series analysis of asset returns is intraday transactions.
This is the highest frequency that data is available and the structure of this data generating
process determines all lower frequency dynamics. Lower frequency returns are derived from
the high frequency process. Hence the time series features of this process are critical to
understanding the characteristics of daily, and weekly returns. Compared with the tradi-
tional low frequency analysis, high frequency data have an immense number of observations,
a pronounced seasonal structure and random time between trades.

Research on the duration process, or time between trades, is large and began with the
seminar paper of Engle and Russell (1998) which proposes the univariate Autoregressive Con-
ditional Duration (ACD) model. Many extensions have been considered, such as Bauwens
and Giot (2000), Lunde (1999), Grammig and Maurer (2000), Zhang, Russell and Tsay
(2001), Ghysels, Gourieroux and Jasiak (2004) and Bauwens and Veredas (2004).

Among all the characteristics associated with high-frequency transaction records, the
trading time and the price are the most important. The bivariate dynamics of returns and
durations are taken up in Engle (2000). The joint model of return and duration allows for
density forecasts in the duration to the next trade and the associated return distribution. A
joint model is necessary to provide a clear picture of the dynamics of the volatility process.
Durations have an important effect on the volatility of the returns, see for example, Dufour
and Engle (2000), Grammig and Wellner (2002), and Ait-Sahalia and Mykland (2003). A
joint model can help discriminate market microstructure theories. Specifically, the waiting
time between events plays a key role in understanding the process of private and public
information in financial markets.

Besides Engle (2000), bivariate models of returns and duration include Engle and Sun
(2005), and Ghysels and Jasiak (1998). They use a GARCH-type model for the volatility
and an ACD model for the duration. However, the standard GARCH model has problems
capturing the strong persistence in the volatility process, which is an important property in
high-frequency data in many studies. In this paper, we propose a new joint model to describe
the dynamics of the high-frequency data. Specifically, we model the volatility dynamics

1There is unrelated work by Zhou and Zhu (2009) who construct jump component from high-frequency
data, and Tian and Guo (2007) who compare interday and intraday volatility. Lee et al. (2008) and Chong
and Su (2006) investigate the differences in asset classes due to ownership restrictions. Cai et al. (2006) study
which trades move prices. Finally, Cheung et al. (1994) investigate the intraday market return volatility of
the Hong Kong stock market.
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by a component approach, where the volatility components are associated with different
transaction horizons.2 The components are essentially a realized volatility measure calculated
according to trading time and not calendar time.3 The use of volatility components is
motivated by the Heterogeneous Market Hypothesis (HMH) of Muller et al. (1997). The
HMH recognizes the existence of heterogeneity in markets. Different types of traders trade
for different purposes, and thus decide to execute their transactions in different market
situations. They create different volatilities.

In the daily time horizon, Corsi (2009) proposes the Heterogeneous Autoregressive (HAR)
model based on the HMH. The HAR model is popular in modeling daily realized volatility.4

Other research which decomposes daily volatility includes Calvet and Fisher (2008), Engle
and Lee (1999), and Maheu (2005). These papers deal with fixed-interval volatility and
ignore the information from the duration process.

Besides the component model for the conditional variance, return innovations follow a
t-distribution and duration innovations follow a Burr distribution. The new joint model
provides strong improvements in density forecasts for duration and returns and only modest
gains for points forecasts of the variance of returns. Compared to existing models it provides
better in-sample performance and displays improved out-of-sample forecasting power.

The new model is estimated for three stocks from the Chinese market. We also include
three U.S. stocks to provide a comparison with and to gauge the differences. Chinese stocks
are segmented into two groups according to investor entrance permission. The first, share-A
stock, is dominated by the Chinese Yuan, and open only to domestic investors5. The second
is share-B stock, dominated by foreign currency (U.S. Dollar in Shanghai Stock Exchange
and Hong Kong Dollar in Shenzhen Stock Exchange) and open to both domestic and foreign
investors. In addition, we are also interested in the different performance of stocks with
different market capitalization in the Chinese market. We randomly choose one stock from
each of the groups: the Share-A large stock group, the Share-A small stock group, and the
Share-B group.

We optimally select the number of volatility components according to model fit. They
include the squared instantaneous return from the last transaction and the average of those
ranging from several minutes up to one hour. Information beyond one hour has no effect on
intraday volatility for any of the stocks considered. Contemporaneous durations have impor-
tant effects on the volatility process. The longer the duration, the lower is the conditional
variance.6

We find a number of common properties that Chinese markets share with developed

2The idea is also related to the realized volatility literature such as Andersen, Bollerslev, Diebold and
Labys (2001), Andersen, Bollerslev, Diebold and Ebens (2001) and Barndorff-Nielsen and Shephard (2002a,
2002b) since we compute realized volatility over various transaction horizons.

3For a recent review of volatility including realized volatility see Andersen et. al. (2009).
4Recent literature using HAR models includes Andersen, Bollerslev and Diebold (2007), Andersen, Boller-

slev, and Huang (2006), Bollerslev, Kretschmer, Pigorsch and Tauchen (2009), Corsi, Kretschmer, Mittnik,
and Pigorsch (2005), Forsberg and Ghysels (2007), and Maheu and McCurdy (2011).

5In 2002, the Qualified Foreign Institutional Investor (QFII) system was introduced in China to allow
selected foreign institutional investors to invest in Share-A market directly. 86 overseas investors had been
granted QFII status as of August, 2010.

6The results support the Easley and O’Hara (1992) formulation in which the long waiting time means no
information.
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ones. Like the U.S. market, trade durations and the conditional variance of returns display
strong serial dependence. Diurnal patterns of durations and the volatility are similar. There
are more transactions and larger price changes at the beginning of a day and prior to the
close of the market, while less transactions and more stable prices around lunch time.7 The
probability of a trade, as a function of the time from the last trade, increases the first few
seconds but then decreases thereafter. This inverted “U” shape of the conditional hazard
function is inconsistent with the exponential distribution that is popular in the literature.

However, we find some interesting differences. The autocorrelation function of returns and
our model estimates indicate a lower degree of dependence in volatility measures compared
to U.S. stocks. Durations for lightly traded Chinese stocks tend to carry more information
than heavily traded U.S. stocks. In the Chinese market, the trading frequency is much lower.
Long-term volatility components have a larger effect than the short-term components. One
explanation is the existence of longer investment horizon in China. This may be related to
particular institutional trading rules in China and the overall shorter market open time per
day.

The remainder of this paper is structured as follows. Section 2 discusses our new model
along with existing benchmark specifications. Estimation issues are presented in Section 3.
Section 4 reviews the institutional features of the Chinese market and the data. Section 5
presents empirical results. The last section summarizes.

2 Models

The high-frequency transaction data contain two types of observations. One is the time of
the transaction. The other is a vector of the quantities, called the marks, observed at the
time of the transaction. The marks include price, volume, and spread in addition to other
characteristics. The time information is summarized by duration xi which is defined as the
time between two transactions. Denoting ti as the time associated with the transaction i,
the duration is then xi = ti − ti−1. In our paper, we deal with two type of the durations:
The first type is defined as the time between adjacent trades, while the second one is defined
by the arrival time of the transactions occurring at a new price, or the thinned point prices
by Engle and Russell (1998).

The return is the difference of log prices, r̃i = pi − pi−1. Engle (2000) argues that
the natural measure of volatility is the variance per unit of time. Since the variances are
connected to the squared returns, we construct our model based on the return per square
root of time, which is defined as ri = r̃i/

√
xi. Therefore, the data we are dealing with are a

sequence of joint observations of the duration and return denoted by {(xi, ri) , i = 1, . . . , T},
where T is the total number of observations.8

7The Chinese market closes for a 90 minute lunch period.
8In this paper, we are dealing with returns per square root of time except when specified.
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2.1 ACD Models for Duration

We assume the duration process follows the ACD(1,1) model proposed by Engle and Russell
(1998)

xi = ψizi with ψi = ωa + αaxi−1 + βaψi−1 (1)

where ψi is the expectation of the duration conditional on the last period’s information,
and the duration innovation zi follows independent identical distribution fz (·) with a non-
negative support. The standard ACD model assumes that fz (·) is an exponential distribu-
tion, which is called an EACD model.

In an EACD model, the conditional hazard function h (t) = ψ−1
i is constant. Bauwens

and Veredas (2004), Lunde (1999), Hamilton and Jorda (2002) and Zhang et al. (2001)
question whether imposing this restriction on the hazard function is appropriate, and propose
specifications that offer greater flexibility. Bauwens, Giot, Grammig and Veredas (2004)
compare most of the popular duration models, and suggest the ACD specification with a
more flexible innovation distribution, such as a Burr or a Generalized Gamma distribution.

2.2 Burr ACD (BACD) Model

Grammig and Maurer (2000) use the Burr distribution, denoted as Burr(µ, κ, $2) to provide
a more flexible innovation distribution, zi. Coupled with the time-series dynamics of xi in (1)
we have the BACD model. It allows for different forms of the hazard function with different
parameter values. Under the restriction µ = 1, the duration innovation zi is

zi = xi/f (ψi) (2)

where

f (ψi) = ψi

($2)(
1+ 1

κ) · Γ (
1

$2 + 1
)

Γ
(
1 + 1

κ

) · Γ (
1

$2 − 1
κ

) (3)

with 0 < $2 < κ. The density for zi is a Burr distribution and can be written as

g (zi) =
κzκ−1

i

(1 + $2zκ
i )(1/$2)+1

, zi ≥ 0. (4)

The conditional hazard function is

h (xi) =
f (ψi)

−κ · κ · xκ−1
i

1 + $2 · f (ψi)
−κ · xκ

i

(5)

which is non-monotonic with respect to duration for κ ≥ 1 and $2 > 0.
The BACD reduces to a Weibull ACD model when $2 → 0. The standard EACD model

is also a special case if both $2 → 0 and κ = 1.

2.3 Benchmark GARCH-BACD Model

Engle (2000) uses a GARCH-ACD model for the joint process of returns and duration.
Duration follows an ACD model and the conditional variance has a GARCH-type structure.
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There is usually a pronounced market microstructure effect for high frequency data. For
example, an i.i.d. noise process that is uncorrelated with the latent price would induce
an MA(1) structure in the observed returns. In a more general case of dependent noise
an ARMA(1,1) process is usually adopted for the observed return process.9 Using Engle’s
model as a starting point we consider

ri = ρri−1 + ui + φui−1 (6)

where the innovation ui is

ui =
√

qiζi with ζi
iid∼ tν (0, 1) , (7)

and qi is the variance of the return conditional on past volatility and current duration
information. In contrast to Engle who assumes normal innovations10, tν (0, 1) denotes a
Student-t distribution with mean 0, scale parameter 1, and degree of freedom ν to account
for the fat tails in high-frequency returns.

Engle (2000) suggests several versions of the GARCH model to describe the dynamics of
the conditional variance. The most successful one with current duration information is

qi = ωg + αgu
2
i−1 + βgqi−1 + γ1x

−1
i + γ2

xi

ψi

+ γ3ψ
−1
i + γ4ξi. (8)

Here, three parts affect the conditional variance qi. The first part is a GARCH(1,1)-type
effect including the previous squared innovation u2

i−1 and the last conditional variance qi−1.
The second part captures the interaction between the volatility and the duration. It includes
the reciprocal duration x−1

i , the reciprocal of expected duration ψ−1
i , and the duration sur-

prise xi/ψi. The third part is the long-run volatility variable ξi, which captures the long-term
persistence of the conditional variance. It is computed by exponentially smoothing squared
returns r2 with a preset parameter 0.995, as in ξi = .005r2

i−1 + .995ξi−1.
This generalized GARCH-BACD model is our benchmark specification in our empirical

work.

2.4 HAR-BACD Model

In addition to including the more flexible Burr distribution for durations and the Student-t
for returns, our main contribution from a modelling perspective is to improve the conditional
variance specification.

We apply a component approach to high-frequency volatility. The basic idea is motivated
from the Heterogeneous Market Hypothesis (HMH) of Muller et al. (1997), which recognizes
the presence of heterogeneity in traders.11 Market participants have different time horizons,
and therefore perceive, react to, and cause different types of volatility. For example, market
makers and intraday speculators have very short time horizons and focus on the tick-by-tick
data; while, on the other end, the central banks and some pension funds may only be con-
cerned with the long-term performance of the markets. In a heterogeneous market, different

9Refer to Campbell, Lo and Mackinlay (1997) for a review.
10He uses this in quasi-maximum likelihood estimation.
11A close and related idea is advocated by Andersen and Bollerslev (1998a) where they show different

fractions of return volatility are associated with different information flows.
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types of traders trade for different purposes and thus decide to execute their transactions
in different market situations, hence they create different volatilities. Motivated by HMH,
Corsi (2009) proposes the Heterogeneous Autoregressive (HAR) model for the daily volatil-
ity. He shows that although the HAR-type model is not a true long-memory model, it does
provide a good approximation to the dynamics of long memory which is a stylized fact of
high frequency data.12

We apply this idea in the high-frequency framework, and decompose the conditional
volatility into components which are associated with different transaction horizons in business
time. Specifically, the M -component HAR-BACD model includes (1), (2), (6) and (7) along
with the following conditional variance,

qi = β0 +
M∑

m=1

βmV Ci−1,hm + γ1x
−1
i + γ2

xi

ψi

+ γ3ψ
−1
i . (9)

M is the total number of the components, and V Ci−1,hm is the m-th realized volatility
component defined as

V Ci−1,hm =
u2

i−1 + · · ·+ u2
i−hm

hm

(10)

where hm is the number of ticks (transactions) associated with each component. Therefore,
components are associated with transaction times and not calendar time as in Corsi (2009).
Oomen (2006) shows that transaction time sampling leads to more efficient estimates of
volatility.

We will discuss how to choose M and hm later. When hm > 1, V Ci−1,hm is the realized
volatility constructed from squared return innovations during the time period from transac-
tion i− hm to transaction i− 1. When trading is light (heavy) the calendar time over which
V Ci−1,hm is computed will be large (small) and in general will vary throughout the day.

Compared with the conditional volatility equation (8) the HAR-BACD decomposes the
total volatility into different volatility components V Ci−1,hm for m = 1, . . . , M . According
to HMH, each component corresponds to a group of market participants with a transaction
horizon hm. Short-run components are captured by small hm, and medium to long-run
components are captured by larger hm. Of course the components are relative to the trading
activity in the market. By summing up all the M terms, the dynamics of the total volatility
process is just the aggregate of the different market volatility components. Since we have
included volatility components with a variety of transaction time horizons, the HAR-BACD
model takes into account any long-run volatility component naturally, thus we exclude the
term ξi found in the GARCH model (8). The remaining interaction terms between the
duration and volatility are the same.

12For evidence of strong temporal dependence in high frequency data, see for example Engle and Russell
(2009).
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3 Econometric Issues

3.1 The Likelihood

The information set up to observations s is Is = {(xi, ri) , i = 1, . . . , s}. Given the model
parameter θ, denote the sample data YT = {yi}T

i=1 = {(xi, ri)}T
i=1 , then the likelihood of the

T observations is

p (YT |θ) =
T∏

i=1

f (ri, xi|Ii−1, θ) . (11)

The conditional distribution of each observation (ri, xi) can be written as

f (ri, xi|Ii−1, θ) = f (xi|Ii−1, θ) f (ri|Ii−1, xi, θ) (12)

where f (xi|Ii−1, θ) is the marginal density of the duration and f (ri|xi, Ii−1, θ) is the density
of the return conditional on current duration. The marginal density of duration is calculated
from (1) as

f (xi|Ii−1, θ) =

(
1

ψi

)
fz

(
xi

ψi

| Ii−1, θ

)
, (13)

where fz (·) is the Burr density function for duration innovation zi. The density of the return
conditional on current duration can be calculated from equation (6) as

f (ri|Ii−1, xi, θ) = fu (ui|Ii−1, xi, θ)

= fu (ri − ρri−1 − φui−1|Ii−1, xi, θ) (14)

where fu (·) refers to the probability density function for ui which is a Student-t with variance
qi and degree of freedom ν.

3.2 Bayesian Estimation

We estimate the models in the Bayesian framework. According to Bayes rule, the posterior
distribution p (θ|IT ) is proportional to the product of the likelihood and the prior density,
p (θ|IT ) ∝ p (YT |θ) p (θ) . Since neither the posterior nor the conditional posterior distribu-
tions have a known distribution, we cannot use the Gibbs sampling algorithm. Instead, we
adopt the random walk Metropolis-Hastings (M-H) algorithm to simulate from the poste-
rior. Good introductions to MCMC methods for Bayesian estimation can be found in Koop
(2003) and Geweke (2005).

We iterate over the following steps to jointly sample all parameters at once.

1. Given the current value of the parameter vector θ, propose a new parameter vector
according to

θ′ = θ + V, V ∼ N(0, τΣ). (15)

2. Accept θ′ with probability

η = min {p(θ′|YT )/p(θ|YT ), 1} . (16)

Otherwise retain θ as the current draw from the chain.
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τ is a tuning constant set to achieve an acceptance frequency between 0.3-0.5. Σ is the
sample covariance matrix estimate calculated from an initial first run using a single-move
version of the above algorithm. The single-move samples from each conditional posterior
density p(θj|θ−j, YT ) until each component of the parameter vector is updated.

After dropping an initial set of burn-in draws from step 1–2 we collect the remaining N
draws, {θ(j)}N

j=1 which are then used in posterior inference. For instance, the posterior mean
of θ can be consistently (N →∞) estimated as

θ̂ =
1

N

N∑
j=1

θ(j). (17)

3.3 Model Comparison

The Bayesian approach allows for the comparison and the ranking of nested and non-nested
models by Bayes factor or posterior odds. The Bayes factor for model M0 versus M1 is defined
as BF ≡ p(YT |M0)/p(YT |M1), which is the ratio of marginal likelihoods and summarizes the
evidence for model M0 against M1. The marginal likelihood (ML) for model Mj, j = 0, 1 is
defined as

p(YT |Mj) =

∫
p(YT |θ,Mj)p(θ|Mj)dθ, (18)

where p(YT |θ, Mj) is the likelihood and p(θ|Mj) the prior for model Mj. This is a measure
of the success the model has in accounting for the data after the parameter uncertainty
has been integrated out. Model comparison by Bayes factors penalizes highly parametrized
models that do not deliver improved predictive content. For a discussion on the advantages
of Bayes factors for model comparison see Koop and Potter (1999).

For the marginal likelihood we use the method of Gelfand and Dey (1994) adapted by
Geweke (2005) (Section 8.2.4). This estimate is based on

1

N

N∑
i=1

g(θ(i))

p(YT |θ(i), Mj)p(θ(i)|Mj)
→ p(YT |Mj)

−1 as N →∞, (19)

where g(θ(i)) is a truncated multivariate Normal. θ(i) is a MCMC draw from the posterior.
Note that the prior, likelihood and g(θ) must contain all integrating constants. Finally, to
avoid underflow/overflow we use logarithms in this calculation.

3.4 Out-of-Sample Density Forecasts

The comparison of out-of-sample forecasting power is also very straightforward in Bayesian
framework. As argued in Geweke and Whiteman (2006), the predictive likelihood (PL)
evaluates the out-of-sample prediction of a model, making it the central quantity of interest
for model comparison. Specifically, the predictive likelihood (Geweke (1995, 2005)) is defined
for data ys, ..., yt, s < t and model Mj as

p(ys, ..., yt|Is−1,Mj) =

∫
p(ys, ..., yt|θ, Is−1,Mj)p(θ|Is−1,Mj)dθ (20)
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and it is the predictive density evaluated at the realized outcome ys, ..., yt. The integration
is performed with respect to the posterior distribution based on the information set Is−1.
Specially, if s = 1, this is the marginal likelihood we defined above. Since

p (ys, ..., yt|Is−1,Mj) = p (y1, ..., yt|Mj) /p (y1, ..., ys|Mj) , (21)

the log(PL) for the out-of-sample data can be calculated by taking the difference between
the log(ML) for the full sample and the Log(ML) for the in-sample data.

3.5 Out-of-Sample Point Forecasts

To evaluate the accuracy of the conditional variance of returns for a model we compare them
to high frequency squared returns r2

i . The out-of-sample performance over observations
s, s + 1, . . . , t, s < t, is measured by mean absolute error (MAE), and root mean squared
error (RMSE) defined as

MAE =
1

t− s + 1

t∑
i=s

∣∣Var (ri|Ii−1, xi)− r2
i

∣∣ , RMSE =

√√√√ 1

t− s + 1

t∑
i=s

(Var (ri|Ii−1, xi)− r2
i )

2
.

(22)
Var(ri|Ii−1, xi) is the 1-step ahead conditional variance of the return given current informa-
tion from equation (8) or (9) for GARCH-ACD and HAR-ACD models respectively. The
out-of-sample conditional variance is computed by averaging over the relevant quantities
from the MCMC output based on the current information set. As in the last section, the
model is re-estimated at each stage in the out-of-sample period to compute the variance
forecast. r2

i is the squared return and serves as an estimate of ex-post variance.

4 Institutional Features and Data

According to World Federation of Exchanges13, at the end of August 2009, the New York
Stock Exchange had a market value of 10,842 billion dollars with total share turnover of
12,158 billion. The London Stock Exchange had a market value 2,560 billion and turnover of
2,321 billion. The two stock exchanges in China, the Shanghai Stock Exchange and Shenzhen
Stock Exchange had a total market value of 2,739 billion and turnover of 5,017 billion. The
Chinese markets are comparable with developed markets.

There are some unique features of the Chinese stock market. First, there is a “T+1” rule,
which means that if an investor buys a stock today, it cannot be sold until tomorrow. Second,
short sales are forbidden.14 Third, there is a limit move rule, where the daily price change
of an individual stock cannot exceed 10%. These rules discourage short-term transactions
since a lot of intraday trading opportunities (day traders) are curtailed. As a consequence,
the investment horizon tends to be longer, and the trading intensity can be expected to be
lower in Chinese markets.

13http://www.world-exchanges.org/statistics/
14China began the trial margin trading and short selling scheme on March 31, 2010, and approved six

brokerages as the first batch of pilot firms to take part in it.
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There are two separate stock markets in China: Share A and Share B markets. The
Share A market is open only to domestic investors, while Share B market is open to both
domestic and foreign investors.

We select three stocks from the Chinese stock markets and the U.S. market respectively.
Specifically, we classify Chinese stocks into 3 groups, and randomly choose one stock from
each group: 1) The China Petroleum and Chemical Corporation (Sinopec) from the Share-
A large market capitalization group; 2) Xinfu Pharmaceutical Co. Ltd (XFPC) from the
Share-A small market capitalization group; 3) China Wanke Co. Ltd B share (WKB) from
the Share-B group.15 In the U.S. market, we select 3 stocks from different industries. 1) IBM
from the Technology sector; 2) Exxon Mobil Corporation (XOM) from the Basic Materials
sector; 3) Pfizer Inc. (PFE) from the Health-care sector. They all are heavily traded stocks.

All Chinese stock market data are provided by the China Finance Online Company. We
include all the normal trading days from March 1, 2006 to May 31, 2006. There are 60 valid
days.16 The Chinese stock market opens 4 hours a day, which is from 9:30am to 11:30am,
and 1:00pm to 3:00pm. We use the observations within this period. Since records in high
frequency data usually contain many errors or redundant information, we filter them first.

To summarize, the filters we apply with corresponding summary statistics in Table 1 are:

· Filter 1 deletes error records.

· Filter 2 integrates all the transactions occurring at the same time into a single trans-
action with a volume weighted average price

· Filter 3 drops all observations with no price change.

Table 1 displays the reduction in data due to filtering. The error records are usually less
than 1%. Transactions with the same time stamp are around 5% of the total observations.
The average number of the valid observations per hour is 310 for Sinopec, 117 for XFPC
and 89 for WKB. There are a lot of transactions with no price change, ranging from 48.47%
(XFPC), 50.45% (WKB) to 55% (Sinopec) of the total observations. The average number
of the price change observations per hour is 128 for Sinopec, 57 for XFPC and 42 for WKB.
For the univariate ACD models, we use all the sample. When exploring our joint model, we
reserve the first approximate 1 month of data as startup values as the maximum lag length
that we consider in the conditional variance is 1 month. We then divide the remaining
observations into the in-sample period and the out-of-sample period, with the out-of-sample
data extending roughly 3 weeks. These details are listed in the bottom panel of Table 1.

The U.S. transaction data are obtained from the Trade and Quotes (TAQ) database. We
choose the same sample period as in Chinese stock market, which is from March 1, 2006 to
May 31, 2006 (64 days). Keeping only those records within normal trading hours (9:30 am

15Sinopec (Code: 600028) is one of the major petroleum companies in China. It is a component of the
local major stock indexes. XFPC (Code: 002019) is a manufacturer and supplier of Vitamin B5, which was
established in November 1994 and listed in Shenzhen Stock Exchange as a high-tech enterprise in July 2004.
China Wanke Company Limited (Code: 200002) is the largest residential real estate developer in China. Its
stocks are traded in both Share-A market and Share-B market. Here we choose its B Shares. The three
stocks are all heavily-traded stocks in their markets.

16There are 61 normal trading days in this period. Because of the shareholder meeting, each stock trading
is closed for 1 day: the Sinopec on May 24, XFPC on May 22 and WKB on May 30.
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to 4:00 pm), we filter the data in a similar way.17 The filter result is reported in the last 3
columns of Table 1. Compared with the Chinese market data, U.S. stocks have much heavier
trading intensity. They have very high percentage of observations happening at the same
time (30.63% for IBM, 50.26% for XOM and 58.54% for PFE). There are around 500− 800
transactions each hour, compared to the most active Chinese stock, Sinopec, which has
around 128 observations each hour. The statistics of the duration for the original and the
thinned process, the absolute return and the return for all the six stocks are summarized in
Table 2. Average duration are much larger for the Chinese stocks.

The autocorrelation function of returns and absolute returns for Sinopec and IBM are
presented in Figure 1.18 In those diagrams, the two dotted horizontal lines are the Bartlett
standard error bands. Most of the autocorrelation function for the returns are within the
confidence bands except for the first lag. In contrast, most autocorrelations of the absolute
returns exceed the bounds even at 500 lags. The standard GARCH functional form will have
problems capturing this, while our HAR-BACD model is designed to deal with this.

4.1 Diurnal Adjustments

Intraday data typically contain a very strong diurnal pattern. The diurnal adjustments for
the durations and the returns follow Engle and Russell (1998). We regress the durations
on the time of day using a cubic spline specification, and then we take the ratios of the
durations and their fitted values to obtain diurnally adjusted durations. The internal knots
are set on each hour. Since the transaction frequency drops quickly at the end of the day, we
add an extra knot in the last half hour (knots at 10:00, 11:00, 11:30 (1:00), 2:00 and 2:30 for
Chinese stocks, and at 10:00, 11:00, 12:00, 1:00, 2:00, 3:00 and 3:30 for U.S. stocks). Recall
that the Chinese markets close from 11:30 to 1:00pm. For observed returns r̃i, we first divide
them by the square root of actual durations as ri = r̃i/

√
xi, and then regress the absolute

values of ri on the time of day in the same way as durations. Diurnally adjusted returns are
obtained by taking the ratios of ri and their corresponding fitted values.

The daily spline estimates for duration and the absolute return are displayed in Figure 2.19

The top panel is for Sinopec data and bottom panel for IBM. Both series have very similar
daily patterns. The daily spline for durations has an inverse “U” shape. Durations are very
short after the open and prior to the close of the market, indicating more transactions during
these periods. The durations are much longer around the lunch time in the U.S. market. In
Chinese market the transaction durations are still very long before and after the lunch break.
The diurnal pattern for the absolute returns is also quite similar among stocks. We can see a
peak at the open, flat during most of the day until it increases again before the close. These
daily patterns are consistent with daily information flow. Investors adjust their positions

17In U.S. market, the errors are removed as follows. Only records with correction indicator = 0 or 1,
and the sale condition is blank or “E”are retained. According to TAQ documentation, correction indicator
=0 or 1 signal those trades as good trades where 0 means “Regular trade that was not corrected, changed,
or signified as cancel or error”, and 1 means “trade which was later corrected”. The blank sell condition
means a trade made without any stated conditions. “E” stands for “the high-speed electronic connection for
immediate automatic execution”.

18The autocorrelation functions for XFPC and WKB are not reported but display a similar pattern.
19We only report Sinopec and IBM as representative stock. Other stocks are very similar.
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intensively at the beginning of the day to incorporate new information from the overnight
period. However, for the Chinese data, there is a small peak around mid-day because price
volatility jumps as the market is re-opened after the lunch closure.

5 Empirical Results

For all posterior simulations we use a burn-in sample of 10, 000. The number of draws for
the first single-move sampler is 10, 000 and for the joint block sampling step is 40, 000. These
latter draws are used for all posterior inference in this paper. We investigate running the
chain from different starting values and compute convergence diagnostics such as Geweke
(1992). The results show that our posterior draws mix well and the chain converges quickly.

The priors for the following parameters are independent normal N (0, 100): ρ and φ in the
ARMA equation, ωg, αg, βg, β0, all βm and γi, i = 1, 2, 3, in the conditional variance equation.
To guarantee the non-negativity of the duration, we set priors for the ACD parameters:
ωa, αa and βa to be truncated N(0, 100) with positive supports. The stationary condition
αa + βa < 1 is imposed. All priors are very uninformative. When the degree of freedom ν
is larger than 30, the t-distribution is close to the normal, therefore we select gamma prior
ν ∼ Gamma (8, 0.5), that favors fat-tails with the restriction ν > 2 to ensure the variance
exists. This puts most weight on the region (2, 40). The priors for the Burr distribution
parameters κ and $2 are set to be truncated N (0, 100) with positive supports and the
restriction κ > $2.

5.1 ACD Model for Full Sample

Table 3 reports estimation results for all the stocks using Burr-ACD model for the full sample
of data which includes durations associated with no price change (Filter 2 data). This
provides a check on our bivariate model estimates which are based on data that drops zero
price change observations (filter 3 data). The posterior means and the standard deviations
of the coefficients are presented. All the estimates are in the 95% posterior density intervals
that exclude 0. Both China and U.S. markets have a very high persistence (high β). The
significance of both the κ and ω2 parameters suggests the validity of the Burr distribution.
The parameter estimates and implied dynamics of duration are in line with the results for
the bivariate model which is discussed below.

5.2 Which Components are Important?

To study the joint model of return and duration, we now work on the thinned process with
price change (Filter 3 data). The conditional variance of returns in (9) requires the selection
of the number of components and the number of transactions that enter into a component.20

20According to the HMH, there are different market components, but there is no specific rule on how to
determine either the optimal number of the components M or the time horizon associated with each compo-
nent. For example, Muller et al. (1997) study the half-hourly time series in ϑ-time, which is transformed data
in a time scale in where no intraday seasonalities exist. They select M = 7 market components in ϑ-time.
Corsi (2009) uses 3 components, daily, weekly and monthly volatility to forecast daily realized volatility.
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In principle we could include M and hm in our main estimation procedure, however, due
to the large number of observations this would increase the computation costs substantially.
Therefore, we select optimal values of these parameters based on a first step of estimation
using Bayes factors.

Although the components are associated with transaction time an approximate corre-
spondence with calendar time can nevertheless be established for each stock depending on
the trading intensity. The candidate volatility components are listed in Table 4. We classify
all the volatility components into 5 groups according to their approximate time horizons:
instantaneous components (with the time horizon H < 1 minute), short-term components
(1 minute ≤ H ≤ 10 minutes), medium-term components (10 minutes < H ≤ 1 hour), long-
term components (1 hour< H ≤ 1 day), and very-long term components (H > 1 day). The
number of ticks we use to construct each component is also listed. For example, for Sinopec
stock, the average duration for 1 tick is around 30 seconds, so 30 seconds is its volatility
component for the minimum time horizon.

Our method begins with a model with no components (M=0). We set this model as a
benchmark and record its marginal likelihood (ML). We add the first component and compute
the ML. The ML from new models are directly comparable by Bayes factors as discussed
in Section 3.3. If the component improves the ML (log-Bayes Factor is greater than 0) we
have an improvement in the specification. However, if the ML from the benchmark is larger
(log-Bayes Factor is less than 0), the method stops, assuming the benchmark ML is larger
for the next two specifications with M +1 and M +2 components. Otherwise, we choose the
new model with the larger ML and set it as the new benchmark. The evaluation process is
repeated until no remaining component terms can improve the ML. This is done separately
for each stock. The selected terms in the optimal model are fixed and used throughout the
remainder of the paper.

The chosen volatility components are listed in Table 4 with ∗∗. The Chinese stocks
display a similar structure. The volatility dynamics are best described by four components.
Among them, the volatility of the previous trade is the most important, as all the components
associated with the previous tick are selected. Short-term components are also important,
as 2, 3 and 10 ticks are selected. Middle-term components have some presence. At least one
component is from this group. All the long-term and very-long term components are found
to be of no importance. The coefficients on terms which have time horizons more than 1
hour are very close to 0, and including them in the conditional variance equation does not
improve the ML. This suggests that when considering the intraday volatility behavior, the
information beyond 1 hour has little to no effect on current price change.

The best models in the U.S. market have four or five components. Similar to the Chinese
stocks, the short-term and middle-term components are important, as all three stocks have at
least one component from the short and the middle term groups. The long-term components
are negligible. However, as U.S. stocks have higher trading frequencies, the instantaneous
(less than 1 minute) components tend to affect volatility dynamics more. The volatility of the
previous trade is included in the best models and IBM and XOM have an extra component
associated with 30 seconds.
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5.3 Model Comparison

Table 5 reports the model comparison for the specifications GARCH-BACD, HAR-EACD
and HAR-BACD. The HAR-EACD model combines the new conditional variance with the
less flexible exponential distribution for durations. Panel A of the table reports the log-Bayes
factors (Log(BF)) using the in-sample data listed in Table 1.21 Panel B presents the results
for log-predictive Bayes factors (log(PBF)) calculated from the out-of-sample data listed in
the bottom of Table 1. Panel C and Panel D report the out-of-sample root mean squared
error (RMSE) and mean absolute error (MAE) as in equation (22).

Looking at the first log-Bayes factors calculated from the marginal likelihood, we see
a huge improvement on model fit in moving from the exponential distribution to the Burr
distribution for duration innovations. For instance, for Sinopec the HAR-BACD model is
exp(3758) times better at describing the data compared to the HAR-EACD specification.
This evidence is true for all stocks. The second log-Bayes factor compares the GARCH
functional form with the new variance specification. Here again the evidence is very strong
in favor of the component model for the conditional variance. For instance, the log evidence
for the HAR-BACD is 80 for Sinopec, 48 for XFPC, 77 for WKB while the evidence for the
model is greater from the U.S. stocks. This means we have decisive support for our new
specification. Taking into account all the transaction data, the new conditional variance
specification provides large improvements in fitting the data. For example, the HAR is
exp(80) times better for Sinopec and exp(48) times better for XFPC in accounting for the
data as compared to the GARCH functional form.

The log-predictive likelihood measures how the specifications perform in the out-of-
sample data. The results continue to rank the models in exactly the same way. For example,
the log-predictive Bayes factor of our new specification compared to the GARCH model is 44
for Sinopec, which means when we forecast using out-of-sample data, the new specification
fits the data exp(44) times better than the GARCH model. The main difference between the
marginal likelihood and the predictive likelihood is that the latter minimizes any impact of
the prior distributions. Since the cumulative log-predictive likelihood measures the quality of
out-of-sample density forecasts with parameter uncertainty integrated out, the HAR-BACD
provides the best forecast performance.

Panels C and D report the accuracy of out-of-sample point forecasts of the conditional
variance. We see marginal improvements in RMSE and MAE. In all cases except one, moving
from the GARCH model to the HAR model improves variance forecasts. However, the gains
as measured against squared returns are small.22

By all measures, over different portions of the data sample, for Chinese and U.S. stocks,
the new HAR-BACD model is very competitive.

21We have also compared models with a normal distribution for return innovations and found it to be
dominated by the Student-t distribution used in this paper.

22A drawback of using daily squared returns as a proxy for ex post variance is that it is noisy which
can make it difficult to discriminate among models (Andersen and Bollerslev 1998b). It is not clear how
important this noise is for high-frequency intraday squared returns r2

i .
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5.4 Parameter Estimates

The estimation results for our best joint model of durations and returns are presented in
Table 6. As discussed in Section 5.2, the conditional volatility equation of the HAR-BACD
model consists of 4 volatility components for Chinese stocks, and 5 or 4 components for
U.S. stocks. We report the posterior means of the coefficients and their associated standard
deviations. The cells with stars have 0.95 posterior density intervals that exclude 0.

Panel A of this table reports the coefficients for the return equation. We see evidence
of market microstructure dynamics and the typical strong persistence in the conditional
variance of returns as well as fat-tails in the innovation distribution. All stocks have a strong
and negative AR coefficient ρ, which is consistent with the presence of market microstructure
dynamics. The degree of freedom parameter in the t-distribution ν is estimated around 7
for all stocks except for Sinopec and XOM. The smaller ν, the more fat-tailed is the return
distribution relative to a normal.

Panel B lists the parameter estimates for the duration process. The duration displays
the GARCH-type property of clustering. Short (long) trading durations tend to follow short
(long) durations. All the coefficients are significant. The coefficient βa is large and around
0.9, while the effect of the last duration αa is small. All the estimated parameters of the
Burr distribution have κ > 1 and $2 > 0. This shows that the Burr distribution is much
more appropriate for duration innovations than the exponential distribution which restricts
the hazard function to be constant. The implied conditional hazard functions for all the
stock durations are unimodal with an inverse “U” shape, which implies that the probability
of a transaction increases first with elapsing time and then decreases as time goes by. The
conditional hazard functions for Sinopec and IBM are displayed in Figure 3, with other
stocks have similar patterns.

Panel C describes the effects of the duration on the conditional variance. All the co-
efficients are different from 0, indicating that contemporaneous duration terms are very
important. The signs of the coefficients γ1 and γ3 are the same across all the stocks, sug-
gesting the similar interactions between trading times and price movements. Specifically,
the coefficient for the inverse of the duration 1/xi is positive, which means a longer con-
temporaneous duration is associated with a lower volatility. This is supportive for Easley
and O’Hara (1992) in which long durations are interpreted as having no information so that
volatility decreases. The coefficients for the duration surprise xi/ψi are decreasing with trad-
ing frequency. They are positive for IBM and all Chinese stocks, but negative for XOM and
PFE which are the most active stocks. This means when the actual duration is large relative
to the expected duration, the transaction tends to be associated with a larger price change
for lightly traded stocks, but decreasing for heavily traded stocks. For the heavily traded
stocks, more investors may be noise traders23 and they may trade for reasons other than the
new information, e.g., because of liquidity or hedging considerations. As a consequence, if
there is no news, transactions based on information tend to halt but the noise traders will
continue trading. Short durations and duration surprises, which have information content,
tend to change the return volatility by a smaller amount for heavily traded stocks.

23According to Dow and Gorton (1997), professional traders and money managers are the main noise
trader. And they usually allocate more assets in those heavily traded stocks because those markets have
higher liquidity and market capitalization.
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The estimated coefficients for the conditional variance are listed in the last panel. All the
volatility components are positive and the majority of them have 0.95 density intervals that
exclude 0. However, the volatility components with different time horizons have different
effects on current volatility. Recent volatility, as measured by u2

i−h, has a larger impact on
the conditional variance. The average derivative of the conditional variance qi with respect
to u2

i−h is displayed in Figure 4 for Chinese stocks and U.S. stocks respectively. h denotes
the lagged transactions. The curve for Chinese stocks is above the curve for U.S. stocks for
majority of the time. This means in transaction time the Chinese stocks show a slower decay
in the effect of past return innovations as compared to U.S. stocks.

The differences in volatility dynamics suggest investors in the Chinese stock market focus
on longer-term information and more investors behave this way than in the U.S.. There are
several explanations for why investors have longer horizons in China. There is the “T+1”
rule, no short sales and the “limit move” that was discussed in Section 4. These institutional
rules largely discourage short-term transactions. As a consequence, the investment horizon
tends to be longer, and the trading intensity is less in China.

6 Summary

In this paper, we study the intraday dynamics of three stocks from the Chinese stock market,
and include three stocks from the U.S. market for comparison. We propose a new joint model
of volatility of returns and the duration between trades. Specifically, we apply a component
approach to the conditional variance and construct a HAR-type model of volatility at the
highest available frequency. Components are based on transaction time and not calendar
time. Applying our model to the Sinopec, XFPC, WKB, IBM, XOM and PFE tick-by-tick
data, we find a dramatic improvement over the traditional GARCH-ACD model. The total
volatility is decomposed into 4 or 5 volatility components. The common components are the
stock volatility from the last transaction and the average volatility from several minutes up
to one hour. Information past 1 hour does not help in the modeling or the forecasting of the
high frequency data.

The new model provides strong improvements in density forecasts for duration and re-
turns and only modest gains for points forecasts of the variance of returns.

The stocks have similar diurnal patterns and the same market microstructure implications
across the markets. Compared to U.S. stocks, the Chinese stocks display much lower trading
activity. For lightly traded stocks, duration carries more information content and is a more
important determinant of volatility dynamics. The long-term volatility components have
a larger effect than the short-term components. We attribute this to a longer investment
horizon in China, which may be the consequence of specific trading rules.
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Table 1: Data Filtering
China U.S.

Sinopec XFPC WKB IBM XOM PFE
Total valid days 60 60 60 64 64 64

Total Obs. 79,229 29,925 22530 578,925 1,345,812 1,466,592
Filter 1 79,162 29,805 22410 576,765 1,341,833 1,462,852

(99.92%) (99.60%) (99.47%) (99.63%) (99.70%) (99.75%)
Filter 2 74,321 28,068 21339 399,453 669,419 608,026

(93.81%) (93.79%) (94.71%) (69.00%) (49.74%) (41.46%)
Obs./Hour 310 117 89 960 1609 1462

Filter 3 30,752 13,624 10032 209,474 333,932 269,670
(38.81%) (45.53%) (44.53%) (36.18%) (24.81%) (18.39%)

Obs./Hour 128 57 42 504 803 648
Range 54-193 13-142 9-97 371-770 633-1100 548-877

Startup Values 11,000 5,500 3,500 65,000 110,000 90,000
In-Sample 11,752 4,124 3,532 94,474 143,932 109,670

Out-of-Sample 8,000 4,000 3,000 50,000 80,000 70,000

This table reports the filtering process for transactions data from the 6 stocks: China Petroleum
and Chemical Corporation (Sinopec), Xinfu Pharmaceutical Co. Ltd (XFPC), China Wanke Co.
Ltd (WKB), IBM, Exxon Mobil Corporation (XOM) and Pfizer Inc. (PFE) in normal trading
days from March 1, 2006 to May 31, 2006. The Chinese stock data is from 9:30am-11:30am and
1:00pm-3:00pm and U.S. data is between 9:30am and 4:00pm. The ”Total Obs.” row reports
the total number of the observation in the data set. The ”Filter 1” row reports the remaining
number of observations by deleting the error records. The ”Filter 2” row reports the remaining
number after integrating all the transactions happening at the same time into a single transaction.
The ”Filter 3” row reports the total number of the observations after the records with no
price changes are discarded. The ”Obs./Hour” rows are the average number of observations
per hour. The final panel reports how we divide total sample into in-sample and out-of-sample data.
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Table 2: Summary statistics
China U.S.

Sinopec XFPC WKB IBM XOM PFE
Duration Mean 11.346 29.062 39.210 3.747 2.234 2.460

Stdev 7.042 32.969 50.689 4.413 2.132 2.405
Thinned Mean 11.486 29.748 41.560 3.911 2.270 2.578
Duration Stdev 7.061 33.970 54.129 4.576 2.173 2.515
Return Mean 2.33e-6 -1.01e-6 3.82e-6 -1.97e-6 -1.23e-6 -1.81e-6

Stdev 6.97e-4 6.50e-4 7.49e-4 2.12e-4 1.69e-4 3.11e-4
Absolute Mean 6.06e-4 4.58e-4 5.03e-4 1.53e-4 1.20e-4 2.46e-4
Return Stdev 3.44e-4 4.63e-4 5.55e-4 1.46e-4 1.18e-4 1.91e-4

This table reports the statistics for the stocks in normal trading days from March 1, 2006 to May
31, 2006. The Chinese stock data is from 9:30am-11:30am and 1:00pm-3:00pm and IBM data is
between 9:30am and 4:00pm.

Table 3: Estimation Results for ACD Model
China U.S.

Sinopec XFPC WKB IBM XOM PFE
ω 0.0034 0.0176 0.0259 0.0114 0.0104 0.0507

(0.0004) (0.0013) (0.0021) (0.0006) (0.0006) (0.0019)
α 0.0152 0.0629 0.0773 0.0325 0.0286 0.0665

(0.0008) (0.0029) (0.0039) (0.0008) (0.0008) (0.0013)
β 0.9813 0.9195 0.8973 0.9562 0.9611 0.8829

(0.0010) (0.0038) (0.0053) (0.0014) (0.0014) (0.0030)
κ 2.4745 2.2470 2.0268 9.8942 6.4726 13.4348

(0.0125) (0.0222) (0.0224) (0.7320) (0.9004) (1.4842)
$2 0.4046 0.8474 0.8112 9.6993 4.2918 9.0024

(0.0089) (0.0233) (0.0258) (0.7360) (0.3993) (1.3916)

This table reports the posterior means and the standard deviations of the coefficients for all the
stocks using Burr-ACD model for the full sample.
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Table 4: Candidate Volatility Components

Components Time Number of ticks
China U.S.

Sinopec XFPC WKB IBM XOM FPE
Instantaneous 5 seconds 1∗∗ 1∗∗ 1∗∗

30 seconds 1∗∗ 5∗∗ 5∗∗ 5

S-T 1 minute 2∗∗ 1∗∗ 9∗∗ 13∗∗ 11
(1M≤ H <10M) 2 minutes 4 2∗∗ 1∗∗ 15 25 22∗∗

5 minutes 10∗∗ 4 3∗∗ 40 70∗∗ 55

M-T 10 minutes 20 8∗∗ 6∗∗ 85∗∗ 135 110∗∗

(10M≤ H ≤1H) 15 minutes 30 13 9 125 200 160
30 minutes 60 25∗∗ 20∗∗ 250 400 325∗∗

1 hour 125∗∗ 50 40 500∗∗ 800∗∗ 650

L-T 1.5 hours 180 75 60 750 1200 1000
(1H< H ≤1D) 0.5 day 250 125 80 1750 2600 2100

1 day 500 250 160 3200 5200 4200

V-L 1 week 2500 1250 800 16000 26000 21000
(1D<H) 1 month 11000 5500 3500 65000 111000 90000

This table reports the candidate volatility components (the possible HAR terms) that we consider.
We classify all the volatility components into 5 groups: instantaneous components (Instantaneous:
with the time horizon H < 1 minute), short-term components (S-T: 1 minute ≤ H ≤ 10 minutes),
medium-term components (M-T: 10 minutes < H ≤ 1 hour), long-term components (L-T: 1
hour< H ≤ 1 day), and very-long term components (V-L: H > 1 day). Their approximate
calendar times H are reported in the brackets. The “numbers of ticks” column reports the exact
number of transactions that are used to construct the component in the conditional variance.
Those cells with two stars are the optimally chosen components in the conditional variance.
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Table 5: Comparison of the Models
China U.S.

Sinopec XFPC WKB IBM XOM FPE

A: Log(BF)

HAR-BACD vs HAR-EACD 3758 645 413 12026 12935 7847
HAR-BACD vs GARCH-BACD 80 48 77 198 552 279

B: Log(PBF)

HAR-BACD vs HAR-EACD 2701 835 330 7436 10217 6175
HAR-BACD vs GARCH-BACD 44 71 48 121 672 331

C: RMSE

GARCH-BACD 4.1133 7.4153 4.6521 21.9379 69.1231 5.8145
HAR-EACD 4.0842 7.4072 4.6410 21.8546 69.0271 5.7377
HAR-BACD 4.0842 7.4094 4.6418 21.8548 69.0271 5.7378

D: MAE

GARCH-BACD 0.7463 2.5311 1.7713 2.5748 2.3442 1.6871
HAR-EACD 0.7459 2.5309 1.7714 2.5734 2.3424 1.6868
HAR-BACD 0.7438 2.5292 1.7731 2.5732 2.3420 1.6863

The table reports model comparison results for the GARCH-BACD and the HAR-EACD which
have exponential duration innovations and the HAR-BACD model. Panel A reports the log-Bayes
factors (log(BF)) for the HAR-BACD model against the other specifications using the in-sample
data. Panel B reports the log-predictive Bayes factors (Log(PBF)) for the out-of-sample data
period. Panel C and Panel D report the out-of-sample root mean squared error (RMSE) and mean
absolute error (MAE) as in equation (22). The sample periods are reported in Table 1.
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Figure 1: Autocorrelation Functions
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This figure reports the autocorrelation function of returns and absolute returns for Sinopec and
IBM. The two dotted horizontal lines are the Bartlett standard error bands.
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Figure 2: Diurnal Patterns
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This Figure reports the daily spline estimates for duration and the absolute return. The top panel
is for Sinopec data and bottom Panel for IBM. We use a cubic spline and the internal knots are
set at 10:00, 11:00, 11:30 (1:00), 2:00 and 2:30 for Sinopec, and at 10:00, 11:00, 12:00, 1:00, 2:00,
3:00 and 3:30 for IBM.

Figure 3: Hazard Functions
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This figure reports the conditional hazard functions for Sinopec and IBM.
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Figure 4: Impact of a Volatility Shock on the Conditional Variance

 0

 0.02

 0.04

 0.06

 0.08

 0.1

5001501005025201597531

Transaction Horizon

China
U.S.

This figure reports the average derivative of the conditional variance qi with respect to the past
squared innovation u2

i−h for Chines stocks and U.S. stocks respectively.
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